LHeC Performance Limits

Bernhard Holzer

Definitions

p-p in IP 1,5,8 and e-p ... or p-p in IP2

one electron beam & two proton beams separated in common IR

* run alone

one electron beam and one hadron beam in IP2 or standard HL-LHC operation with two hadron beams

* stand alone

e-p in e.g. IP 2 second proton beam in sep lattice, p-p in IP1,5,8

The Challenges: Boundary Conditions

Many ingredients, that have to be considered:

keep separation scheme soft ... to limit E_{crit} & P_{γ}

$$P_{syn} = \frac{e^2 c}{6\pi\varepsilon_0} \frac{\gamma^4}{\rho^2}$$

keep L* as large as possible (-> LHC Design)

 β^* is determined by L^* $\beta(s)$

$$\beta(s) = \beta^* + \frac{(L^*)^2}{\beta^*}$$

Eelectrons is determined by synchrotron light —> determines circumference and beam energy

keep the beams matched at IP

$$\sigma_x^*(e) = \sigma_x^*(p) \qquad \sigma_y^*(e) = \sigma_y^*(p)$$

and finally ... optimise luminosity

Luminosity and its Limitations:

$$L = \frac{N_e \cdot N_p \cdot n_b \cdot f_{rev}}{2\pi\sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \cdot \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}} \prod_i H_i$$

"Free" Parameters & Limits:

e-Bunch IP

Correction factors

- hourglass factor $H_1 \approx 0.9$
- the pinch $H_2 \approx 1.3 > \prod_i H_i \approx 1$
- filling factor $H_3 \simeq 0.8$
- crossing angle H4 = 1.0

bunch intensity p: N_p , n_b , $f_{rev} \approx const$

bunch intensity e: $N_e \rightarrow I_e$

emittance p:

 β -function:

$$\varepsilon = 3.3 \cdot 10^{-10} \ rad \ m \qquad LIU \ Design$$

$$\beta^* \approx 15 \ cm \ \dots \ 30 \ cm$$

$$\sigma_{px} = \sigma_{ex} \ \leftrightarrow \ \sigma_{py} = \sigma_{ey}$$

ATS $\beta^* = 15 \text{ cm}$, LHC design $\beta^* = 55 \text{ cm}$ Q'-Limit / Aperture

Synchrotron Radiation: $P_s = \frac{2}{3} \alpha \hbar c^2 \frac{\gamma^4}{\rho^2}$ Beam Separation Scheme

B. J. Holzer, CERN

LHC Design / beam-beam Impedance / Budget (P_{\gamma})

example : $\beta^* = 20 \ cm$

Parameter	Electrons	Protons	
Energy (GeV)	50	7000	
particles per bunch	3.1 · 109	$2.2 \cdot 10^{11}$	
bunch distance (ns)	25	25	
Ie	20 mA	1.1 A	
Emittance (nm)	0.31	0.3	
Beam size @ IP (µm)	7.7	7.7	
Length	6.67 km	26.7 km	
Luminosity (cm ⁻² s ⁻¹)	3.3	10 ³³	

Beam Beam Effect —> Electron Emittance

Optimise optics: Rematch including the beam-beam focusing

Performance Limit: Beam disruption

IR Optics for minimum Optics mismatch

development of tails due to non-linear beam beam force

==> ok up to HL-LHC proton currents

Beam Beam Effect —> **Proton Emittance**

... the ultimate limit of any collider space charge of the colliding bunch has a detrimental effect on the opposing bunch

$$\Delta Q_{x,y} = \frac{N_e r_0 \ \beta_{x,y}^*}{2\pi\gamma \ \sigma_{x,y} \ (\sigma_x + \sigma_y)}$$

$$N_e \approx 3 \cdot 10^9 \iff N_p \approx 2.2 \cdot 10^{11}$$

LHeC adds to the tune shift on the percent level tbc via tracking Monte Carlo

e-p Interaction Region: Proton Optics & Orbit

Double Mini-Beta Insertion imbedded e-p collisions in LHC standard structure

we need 110mm within L*=23m —> "soft" separation by detector dipole & e-mini-beta quadrupoles

effect on p-orbit & p-optics compensated

The Interaction Region: Synchrotron Light L*=15 m

keep separation fields as low as possible

The Interaction Region: New Magnets, scaling for L= 23 m*

B. J. Holzer, CERN

Pole tip field of quadrupoles below 1T.

ERL Performance:

front-to-end tracking, including ... emittance blow up (radiation in arcs, spreader, bypass) beam separation scheme energy gain in linacs energy loss in arcs beam-beam effects

particle distribution after IP as starting conditions for the deceleration & energy recovery

ERL performance: \approx 98 %

1/3	unit	Injection	Until IP	Post IP	Dump	Energy
εχ, εγ	um.rad	25.4, 29.4	30.0, 30.0	47.7, 45.2	89.6, 202.6	recovery
dpp	%	0.02	0.0210	0.0210	4.174	07.0.%
Transmission	%	-	100	100	99.93	97.9 %
B. J. Holzer, CERN The LHeC Study 9						

Proton Beam Performance Design Orbits & Aperture Need

concurrent operation IP1,5 / IP2:

- colliding beam
- non-colliding beam

Details Tiziana vWitzleben

Luminosity limited by aperture of Mini- β quadrupoles

Required: 15 σ

 $\beta_1 * = 15cm$ $\beta_2 * = 24m$... for Nb₃Sn technology

Proton Beam Performance

Luminosity limited by aperture of Mini-β quadrupoles

LHeC Luminosity Performance Limits:

-> it's a Proton Problem

$\beta_1 * [m]$	0.2	0.25	0.3	0.35
$\beta_2 * [m]$	18-24	18-24	18-24	18-24
Luminosity $[\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	$3.3 \cdot 10^{33}$	$2.6 \cdot 10^{33}$	$2.2 \cdot 10^{33}$	$1.9 \cdot 10^{33}$

concurrent

HL-LHC design or NbTi stand alone stand alone concurrent LHC established

NbTi ... ?

NbTi

with optimism ...

Nb₃Sn concurrent for $\beta^* = 15 \ cm$ stand alone for $\beta^* = 10 \ cm$ ==> $L \approx 5 \cdot 10^{33} cm^{-2} s^{-1}$ Performance Limit = dyn. Aperture

LHeC Wish List:

establish scenario for stand alone $\beta^* = 10 \ cm$

> aperture check & feasibility of Nb₃Sn mini-β quadrupole

dynamic aperture for an ATS type Q' correction scheme

sextupole correction scheme

dynamic aperture