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Protons E, = 1-7TeV

Heavy-lons E,, = 2.75TeV
Vs=V(4EE) = 0.2-1.3TeV



Experiment for eh (and hh) scattering @ P2

Back in 2019 two proposals were released in parallel = CDR for LHeC
and Eol for “ALICE 3” — both at P2...

In 2022 novel P2 design was proposed to accommodate both
electron-hadron and hadron-hadron collisions
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Electron-Hadron Scattering — Reminder

Huge advantage for eh experiments = total inelastic cross-section:

Oeh K Oy,

Event pileup is very small/negligible at LHeC

.

Data streaming aka “no triggering” is possible (as at EIC and ALICE!)

-

Much broader types of final states/decay channels are feasible

-

Unique capabilities
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LHeCin Run>5

LHeC was conceived to provide eh collisions concurrently to hh collisions at HL-
LHC (at other IPs) = its schedule defines time constraints

2021

Question:

It is possible to commission eh
collisions at P2 in 20367

2030

Proposed answer: yes!

1. By staging LHeC project

2. By accommodating eh
experiment in “ALICE 3e”

2039

J|FiMAM 1[3]A

Shutdown/Technical stop End of HL-LHC program
Lons (1be aher LS4) Nov 28, 2041 at 6:00am
Commissioning with beam

Hardware commissioning
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LHeC: Staging Proposal

If one targets LHeC commissioning in 2036 then staging is necessary
= 20 GeV electron beam offers significant simplifications in design & running:

» Center-of-mass energy of 0.75 TeV ensures excellent science

» Only one-pass ERL is required with significantly lower power use
» Synchrotron Radiation is much softer and simplifies MDI design
» Electron beam separation is easier

» Very high luminosity might be easier to achieve

ALICE 3 requires rather minor adaptations to accommodate eh physics:

 ALICE is already using data streaming
 Beneficial dipole field at IP2 was considered in ALICE 3 proposal
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Electrons at 20 GeV: Layout and geometry

keep two linacs,
keep sc RF design

keep geometry
keep beam separation scheme?

dump

=> in order to allow for staging to two / three turn ERL



Synchrotron Light at 20 GEV o _ 3he[¥
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Need to determine new collimator positions & geometry



Separating electron beam at 20 GeV

-----Proton low B ------ mm———— Electron Doublet ----+ r===--- Proton law - . '
| Quadrupoles ! | L Quadrupoles

y P = :

----------------------

Y .- Electrons "~~~ 7 s LT

Protons

Interesting option:

no new hardware needed on proton side, but using off-axis
electron quads for that (as at HERA)

"Problem":
This does not work at 50 GeV



Arc Radiation Low Losses

Summing up gammas

. 10GeV .
4 4 Viinac, = 511key 1.95-10
Lys =2 YLinac, + YLinac, . 20GeV .
yLinacz = 511keV =391-10
Yyd = (1.95-109)* + (3.91 - 10%)* = 262.6 - 10'°
Py o = CONST - Sy
Py =79.-10"1.262.6-10%° = 207.4kW
1turn
For parameters ...
Should be ok on a 10% -20 % level,
more exact numbers —> BDSIM. Co=67km [, =20mA

Parc = 740m E, = 20 GeV



Proton Beam Dynamics

local orbit bump

local optics distortion

—> on colliding proton beam
—> non-colliding proton beam

corrected locally via LHC
matching quadrupoles
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Effect on optics scales down to sub - % level

AB/B ~ 0.6%

..for 20 GeV /7 TeV

Reminder: Tolerance limit for LHC : A/ = 10%




Electron Beam-Beam Effect Ee = 20 GeV, E, = 7 TeV

Beam-beam disruption parameter for electron goes from ~7 to ~18 between 50 GeV and 20 GeV that is
similar disruption parameter as in 50 GeV and proton/electron 3* = 10 cm configuration so no violent
beam-beam disruption expected even if electron energy is much smaller.
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Beam-Beam Effect: Phase Space after Collision
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Electron Emittance

: 1
¢ scales up with lower energy ¢, = ¢, =
LHeC Design €p =3.3-10710 = Je f =8.1um
B "= 20cm L ~33-1033cm™%s™1

no chance to scale down [3* to compensate for larger emittance.

However ...
excellent emittance of electron source

Parameter Unit Value
Booster energy MeV *
Bunch repetition rate MHz 40.1

€ < 6 Average beam current mA 20

Msource Bunch charge C 500
g p

RMS bunch length mm 3
Normalised transverse emittance 7 -mm-mrad
Uncorrelated energy spread keV )
Beam polarisation Unpolarised /Polarised

Table 10.15: General specification of the LHeC ERL electron source.
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Luminosity (and Polarization) Expectations

Electron emittance at 20 GeV is larger by 5/2

with careful emittance tuning and smaller start emittances we should be able
to stay within emittance regime that allows for compensation of beam optics
and unchanged luminosity values.

Electron beam current for 1-pass ERL should reach 50 mA - for total current in
cavities of 100 mA instead of 120 mA — and luminosity of 103 cm?s?® may be
achieved [— 500 fb! of data in Run 5?] = needs verification asap

High electron longitudinal polarization seems possible as couple of on-going low energy
experiments are demonstrating = needs further investigations



Cost Savings for Stage 1

cost reduction for 1 turn ERL hardware: arc-3-6-spreader / recombiner /

bypass
=~ 100M CHF saving

If HERA electron separation is used: Supercenducting
Interaction-Region{Proten)-Magnets =

~ 100M CHF extra saving
+ much smaller costs for detector at P2

and significantly lower ERL running costs thanks to
negligible SR losses



Detector for Electron-Hadron Scattering @ P2

Measurements of eh scattering require very good detectors for
scattered electrons AND for jets (= HCAL)

Bending power for electron separation of about 1 Tm is needed, but can be also
done with off-axis/combined function electron quadrupoles

Precise electron-hadron luminosity measurements will directly follow EIC design

“Triggerless” data streaming is essential
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Staged LHeC: Summary

LHeC will complete HL-LHC science in profound & relevant ways — in QCD, HF,
top, Higgs* & Electroweak sectors. In addition, PDFs determined at LHeC will
significantly decrease systematic uncertainties of pp experiments

LHeC offers practically ideal conditions for studying high energy yy interactions
(and other exclusive processes) and will open new era in eA studies

win-win-win for science programme at HL-LHC

-

making unique LHeC science + improving precision of pp experiments +
enhancing Hl research with ALICE 3e

[have begun properly writing up concept of LHeC 1% phase]
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Thank you for attention!
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ERL@LHeC as Relay Speed Skating

Men's 5000M Relay Short Track Speed Skating Final - Vancouver 2010 Winter Olympic Games 0o »
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Backup slides
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RF System E_e=50~GeV —> three turns

8.33 GeV energy gain / turn
—> Cavity Gradient 19.7 MV/m

E e=20~GeV —> 10 GeV energy gain/ turn
—> Cavity Gradient 24.2 MV/m

Qo(2K) | Subtracting0.5 nQ2dueto NC
le11 RF losses in SS blank flanges |:. Five-Cell Cavity }
challenging
LIXIXITZ but should be ok.
_ v
1e10 1 quench limit
1e9 v v — — )
0 5 10 15 =20 = 25 30 35

facc (Mv/r?gurt. J-lab
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Synchrotron Light —> 20 GEV Arc Radiation Losses

2 4
e“c -

Synchrotron Radiation for a single electron in a storage ringP, = e ZZ
0

Scaling to one return arc, for N_e electrons per bunch and a bunch distance of At = 25ns
we can rewrite

N,e?c . .
bao=car e p ¥ = CONST -y
N,e%c - 3.1-10%1.62 - 10719 (4s)>?
CONST == _
6:-At-€y-p 25:-107%s:6-8.9107124s/Vm - 740m
N,e2c - 3.1-1091.62 - 10719 (4s)2
CONST =

6-At-€y-p T 25-109s - 6 - 8.9107124s/Vm - 740m
CONST = 7.910~ 4w

Summing up the gammas

Linac 2 -
- - ~ =
atching/Recombine: .
Spreader/Matching

Yys =2 meacl + YLinac,

— — 4
yLinacl - 511keV =1.95-10
. 20GeV \
Yiinac, = S11keV 3.91-10
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Beam Beam Effect: Electrons
NTO/B:T:,y

remember: b-b effect o< 1/y Exy =
and quasi independent of B * Zﬂ@w,y(aw + ay)
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Beam Dynamics “p”
Lattice Design for a e-p Interaction Region
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