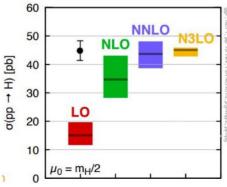
Claire, Maarten

- Reminder of PDF improvements (in numbers, refer to plots in section II)
  - Assume PDFs discussed in Section II
- Impact on HL-LHC measurements (mostly from CDR update)
  - Higgs couplings and cross sections
  - Electroweak :  $\sin^2\theta_{eff}$ ,  $m_W$ , oblique parameters
    - New context
  - Searches
- Impact on future programmes?
  - There exists literature on FCC-eh physics per se, but no on its feedback on future hadron programs

Claire, Maarten

#### Higgs physics

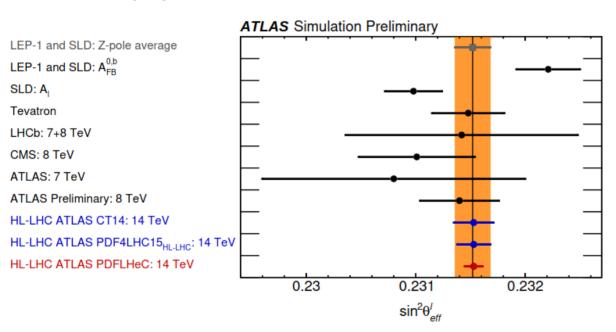
| Process             | $\sigma_H$ [pb] | $\Delta \sigma_{\rm scales}$ | $\Delta \sigma_{\mathrm{PDF}+lpha_{\mathrm{s}}}$ |          |
|---------------------|-----------------|------------------------------|--------------------------------------------------|----------|
|                     |                 |                              | HL-LHC PDF                                       | LHeC PDF |
| Gluon-fusion        | 54.7            | 5.4%                         | 3.1 %                                            | 0.4 %    |
| Vector-boson-fusion | 4.3             | 2.1%                         | 0.4%                                             | 0.3%     |
| pp 	o WH            | 1.5             | 0.5%                         | 1.4%                                             | 0.2%     |
| pp 	o ZH            | 1.0             | 3.5%                         | 1.9%                                             | 0.3%     |
| pp 	o t ar t H      | 0.6             | 7.5%                         | 3.5%                                             | 0.4%     |

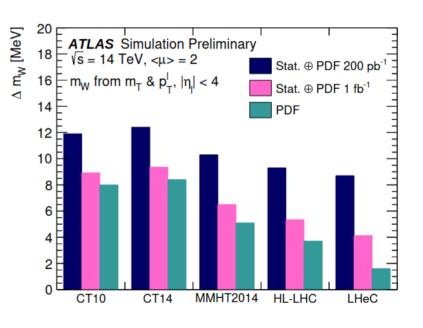

3.00
2.50
2.00
1.50
1.00
0.50
0.00
bb WW gg ττ cc ZZ

■ HL-LHC ■ LHeC ■ pp+ep

δκ/%

3.50

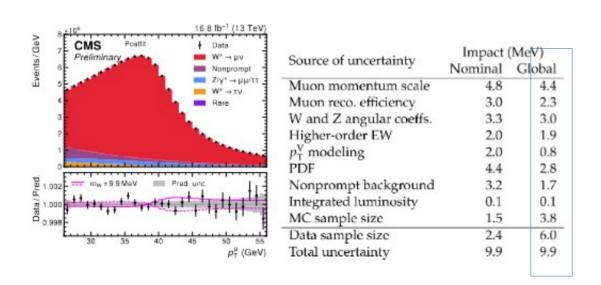

To be updated:




+ comments on impact on rare Higgs decay modes unique to pp programs

Claire, Maarten

#### EW physics






 $\delta sin^2\theta_{eff}~0.00015~\rightarrow~0.00008$ 

from dedicated low-pile-up data

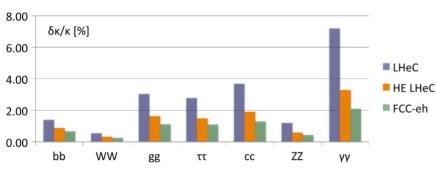
EW physics – new context



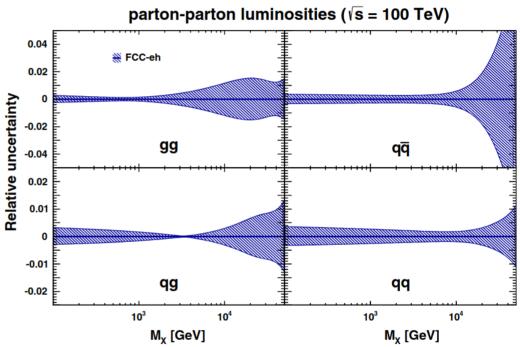
|               |    |   | _   |
|---------------|----|---|-----|
| Λ٦            | ГΙ | Λ | C   |
| $\overline{}$ |    | ╌ | . J |

|            | $p_{\mathrm{T}}^{\ell}$ fit |                   |                      |                  |
|------------|-----------------------------|-------------------|----------------------|------------------|
| PDF set    | $m_W$                       | $\sigma_{ m tot}$ | $\sigma_{	ext{PDF}}$ | $\chi^2$ /n.d.f. |
| CT14       | 80358.3                     | +16.1<br>-16.2    | 4.6                  | 543.3/558        |
| CT18       | 80362.0                     | +16.2<br>-16.2    | 4.9                  | 529.7/558        |
| CT18A      | 80353.2                     | +15.9<br>-15.8    | 4.8                  | 525.3/558        |
| MMHT2014   | 80361.6                     | +16.0 $-16.0$     | 4.5                  | 539.8/558        |
| MSHT20     | 80359.0                     | +13.8<br>-15.4    | 4.3                  | 550.2/558        |
| ATLASpdf21 | 80362.1                     | +16.9<br>-16.9    | 4.2                  | 526.9/558        |
| NNPDF3.1   | 80347.5                     | +15.2<br>-15.7    | 4.8                  | 523.1/558        |
| NNPDF4.0   | 80343.7                     | +15.0<br>-15.0    | 4.2                  | 539.2/558        |

Modern mW analyses designed to reduce PDF sensitivity
Studies ongoing (~1-2 weeks) to evaluate impact of improved PDFs in this context


Searches at high mass

$$\mathcal{L}_{\text{CI}} = \frac{g^2}{\Lambda^2} \eta_{ij} (\bar{q}_i \gamma_\mu q_i) (\bar{\ell}_i \gamma^\mu \ell_i),$$


| Model        | ATLAS (Ref. [709])                                    | HL-LHC                                                     |                                                        |  |
|--------------|-------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|--|
|              | $\mathcal{L} = 36  \text{fb}^{-1}  (\text{CT14nnlo})$ | $\mathcal{L} = 3  \mathrm{ab}^{-1} \; (\mathrm{CT14nnlo})$ | $\mathcal{L} = 3  \mathrm{ab}^{-1} \; (\mathrm{LHeC})$ |  |
| LL (constr.) | $28\mathrm{TeV}$                                      | $58\mathrm{TeV}$                                           | $96\mathrm{TeV}$                                       |  |
| LL (destr.)  | $21\mathrm{TeV}$                                      | $49\mathrm{TeV}$                                           | $77\mathrm{TeV}$                                       |  |
| RR (constr.) | $26\mathrm{TeV}$                                      | $58\mathrm{TeV}$                                           | $84\mathrm{TeV}$                                       |  |
| RR (destr.)  | $22\mathrm{TeV}$                                      | $61\mathrm{TeV}$                                           | $75\mathrm{TeV}$                                       |  |
| LR (constr.) | $26\mathrm{TeV}$                                      | $49\mathrm{TeV}$                                           | $81\mathrm{TeV}$                                       |  |
| LR (destr.)  | $22\mathrm{TeV}$                                      | $45\mathrm{TeV}$                                           | $62\mathrm{TeV}$                                       |  |

Claire, Maarten

FCC-hh/eh : brief comments



**Fig. 1.5.** Determination of SM Higgs couplings in the seven most abundant decay channels, from a fit to simulated WW and ZZ fusion production channels, including acceptance, background and efficiency effects. The statistics is assumed to be collected in simultaneous ep operation with pp at the LHC (HL, HE) and FCC.



+ comments re. Katarzyna/Paul's studies

Claire, Maarten

- Incorporate material from this morning :
  - Katarzyna / Paul
  - Elie

Proposal: brief chat this afternoon to jointly outline sections II and III?