ESPP white paper preparation meeting for LHeC

LHeC synergies with FCCee and Accelerator Technologies

Oliver Brüning and Yannis Papaphilippou, CERN 15th November 2024

Synergies with FCCee

- Synergy with FCCee injector design option with recirculating LINAC (RLI) based on LHeC ERL (even with a 1st stage @ 20 GeV as presented today by Krzysztof)
- Could even be extended to cover full FCCee energy range (i.e. replacing FCCee booster)
- Synergy with SRF pre-series production (including High-Temperature SRF @ 4.5 K) while building CERN SRF expertise (project/team) and industrial validation
- Synergy with high-efficiency klystrons development
- Cryogenic system towards reduced power and cost
- **CE optimization** based on CO2 emission (J. Osborne)
- Cost to be updated based on 2018 LHeC estimate document (consistent with Oliver's cost and resource estimates)
 - \Box Do we need some comparison with **FCCee injector cost**?
- **Schedule** to fit **HL-LHC era** and **towards FCCee** (2035-...)
- Risk mitigation for certain FCCee accelerator technologies by prototyping and testing
- Training opportunities for building ERL expertise (collaboration with Orsay PERLE and bERLinPRO, operational experience)

RLI for FCCee

Need to update parameters for RLI to replace LINAC pre-injectors + Booster, including positron production

Tentative injector parameters with RLI @ 50 GeV (FCC week 2021)

Accelerator	FCCee-Z		FCCee-W		FCCee-H		FCCee-tt	
Energy [GeV]	45.6		80		120		182.5	
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up
RLI # bunches (800 GHz RF)	832		1000		328		48	
RLI bunch population [10 ⁹]	3.0	0.15	1.3	0.04	1.9	0.06	2.8	0.08
RLI injections	1400		140		100		100	
#of BR cycles	-		1		1		1	
# of injections/collider bucket	70		1		1		1	
Total number of bunches	16640		2000		328		48	
Filling time (both species) [sec]	0.3	0.3	5.8	5.8	4.9	4.9	8.0	8.0

CERN

LHeC Accelerator technologies

- **ERL Design options** and **optimization** (K.Andre et al.)
 - □ Separate **FFAG arc design** and impact on **emittance preservation**
 - □ Lattice and robustness studies (imperfections) with improved simulation framework (X-suite)
 - □ Impact of Coherent Synchrotron Radiation and micro-bunching instability handling
- **IR optics design** (B. Holzer et al.)
 - □ Asymmetric magnets using HL-LHC short model coils
- Machine-detector interface (L. Forthomme et al.)
 - □ SR radiation handling/shielding in IR for machine and detector protection
- Super-conducting RF development including (including High-Temperature SRF @ 4.5 K)
- **Fast Reactive Tuner** (FRT) for microphonics mitigation
- High-efficiency klystrons development
- **Cryogenic system** for reduced power and cost
- PERLE as stepping stone for proving several accelerator physics concepts and prototyping/testing technologies