ESPP document IV: Technical feasibility of the LHeC detector part

Paul Newman, Yuji Yamazaki 15 Nov 2024 ESPP white paper preparation meeting for LHeC

The Large Hadron electron Collider as a bridge project for CERN

***1, ...2, 1 ***...

(Dated: November 3, 2024)

[Main eds.: Nestor, Jorgen; readers: Daniel, Monica, Uta]

CONTENTS

Jorgen I. The LHeC "bridge" project (1 p.) [Jorgen]		1
¹⁰ II. The LHeC at the frontline of particle and nuclear physics (4 p.) [Christian]		1
¹¹ III. LHeC physics enabling HL-LHC & high-energy proton collider physics (4 p.)		2
¹² IV. LHeC technology enabling a Higgs factory (4 p.)		2
¹³ V. Technical feasibility of the LHeC (4 p.)	← WG4 contribution: readiness of detector (Yuji)	2
¹⁴ VI. The LHeC Cost and Resource Estimates	 + and accelerator technology (Yannis) i.e. our contribution in 2 pages 	2
¹⁵ VII. The LHeC implementation plan (4 p.)		3
16 Acknowledgments		4
17 A. Some title		4

Proposed contents of the 2p document for detector

Section 4.1:

- Introduction: detector requirements
 - high precision tracker, especially for flavour tagging at high η region
 - very hermetic calorimetry with fine EM granularity + resolution (NC)
 + high resolution HCAL (CC, jets)
 - muon, forward and backward
- Baseline detector design based on advanced and yet mature technologies
 - HV CMOS for central tracker + elliptical beam pipe (with figures)

(further possibilities for e.g. layers in second vacuum, to optimise the performance)

- Fine-segmented calorimeter for endcap (Si or plastic Sci) and LAr for barrel
- Muon chambers, luminosity monitor, FPS, ZDC

Proposed contents of the 2p document for detector

(section 4.1, cont'd)

- Streaming DAQ possible
- Detector simulation
 - in commonly used scheme (DD4Hep) (with a figure)
 - importing interface for generators and export interface to standard reconstruction packages
- Commenting on that: the central part of the LHeC detector is an early opportunity for detector technologies for Higgs factories

Section 4.2: machine-detector interface

simulation results on the SR power, with a preliminary collimator scheme (in preparation by Laurent)

a snapshot from Laurent's slides (Krakow workshop) Events from Pythia 8, -> with e.g. Higgs to bbbar for the white paper