

The present and future of antenna showers

based on JHEP 07 (2024) 161 and PLB 836 (2023) 137614

Milan Joint Pheno Seminar University of Milan Bicocca 25/11/2024

Christian T. Preuss (University of Wuppertal)

BERGISCHE UNIVERSITÄT WUPPERTAL

WUPPER

Modelling QCD radiation

Parton showers dress a fixed-order calculation with radiation, describing the evolution from the **parton level** (quarks, gluons, ...) to the **particle level** (hadrons).

- amplitudes factorise in limits where emissions are soft $(E_j \rightarrow 0)$ or collinear $(\theta_{jk} \rightarrow 0)$
- starting from a large scale t_0 , radiation is modelled under the assumption that it is soft/collinear and ordered $t_0 > t_1 > t_2 > \ldots > t_h$

Evolves event from hard scale t_0 to soft scale t_h , but introduces logarithms

$$\alpha_{\rm s}^n \to \alpha_{\rm s}^n \log\left(\frac{t_0}{t}\right), \ n \le 2m, \ \text{large if } t \ll t_0$$

The full picture

The full picture

- 1. Constructing antenna showers
- 2. Logarithmic Accuracy based on [CTP JHEP07(2024)161]
- 3. NLO matching based on [CTP JHEP07(2024)161]
- 4. Towards NNLO matching based on [Campbell, Höche, Li, CTP, Skands PLB836(2023)137614]

Constructing antenna showers

focussing on FSR

More than one way to skin a cat...

A specific parton-shower algorithm is defined by:

- Branching kernels \rightarrow What is the probability for a parton to branch?
- Recoil scheme \rightarrow How is the four-momentum of the emission generated?

e.g. ARIADNE, VINCIA

intrinsically coherent

• both parents absorb transverse recoil

Evolution variable → In what measure does the event evolve?

- e.g. SHERPA CSS, HERWIG dipole, DIRE
 - recoil taken by opposite dipole end
 - intrinsically coherent

Factorisation in unresolved limits

Factorisation in unresolved limits

All about partitioning singular structures!

Branching kernels contain collinear limit and partial fraction soft eikonal:

$$P_{q \to qg}(p_i, p_j, p_k) = \frac{1}{s_{ij}} \left[\frac{2s_{ik}}{s_{ij} + s_{jk}} + (1 - z_i) \right]$$

soft $j \parallel i$

Note: "rest" of soft limit reproduced by neighbouring dipole with
$$i \leftrightarrow k$$

Ordering variable typically chosen as some notion of transverse momentum:

$$t \equiv p_{\rm T}^2 = z(1-z)s_{IK}$$

$$z = \frac{s_{ik}}{s_{ik} + s_{jk}}$$

$$s_{IK} \equiv s_{ijk} = s_{ij} + s_{jk} + s_{jk}$$

Antenna showers describe radiation from dipoles with local emitter-recoiler-agnostic on-shell kinematics:

$$p_{i}^{\mu} = a_{i}p_{I}^{\mu} + b_{i}p_{K}^{\mu} - cp_{\perp}^{\mu}$$

$$p_{j}^{\mu} = (1 - a_{i} - a_{k})p_{I}^{\mu} + (1 - b_{i} - b_{k})p_{K}^{\mu} + p_{\perp}^{\mu}$$
transverse recoil
taken by p_{I} and p_{K}
emitter+recoiler

$$p_{k}^{\mu} = a_{k}p_{I}^{\mu} + b_{k}p_{K}^{\mu} - (1 - c)p_{\perp}^{\mu}$$

Antenna functions (= branching kernels) contain soft + (part of) collinear limits:

$$A_{g/qg}(p_i, p_j, p_k) = \frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{s_{jk}}{s_{ij}s_{ijk}} + \frac{s_{ij}s_{ik}}{s_{jk}s_{ijk}^2}$$

soft $j \parallel i$ $j \parallel k$

Note: "rest" of
$$j \parallel k$$
 limit
reproduced by neighbouring
antenna with $z \leftrightarrow 1 - z$

emitter+recoiler

Ordering variable typically chosen as symmetric "ARIADNE- p_{\perp} ":

$$t \equiv p_{\perp}^{2} = \frac{s_{ij}s_{jk}}{s_{ijk}} \to \begin{cases} (1-z_{i})s_{ij} & j \parallel i\\ (1-z_{j})s_{jk} & j \parallel k \end{cases}$$

$$z_i = \frac{s_{ik}}{s_{ik} + s_{jk}} \approx \frac{s_{ik}}{s_{ijk}}$$

Aside: sector antenna showers

Idea: combine antenna showers with deterministic jet-clustering algorithm

• shower only generates branchings that would be clustered by a $3 \mapsto 2$ clustering algorithm ~ ARCLUS [Lönnblad Z. Phys. C 58 (1993)]

- \Rightarrow softest gluon always regarded as emitted one
- \Rightarrow only one (most singular) antenna contributes at each phase-space point

Parton showers in PYTHIA

Simple shower PartonShowers:model = 1

- PYTHIA's default $p_{\rm T}$ -ordered shower algorithm
- based on DGLAP splitting functions + dipole-like kinematics

VINCIA PartonShowers:model = 2

- antenna shower ordered in p_{\perp}
- based on antenna functions + local antenna kinematics

DIRE PartonShowers:model = 3

NEW

- dipole shower ordered in p_{\perp}
- based on dipole splitting functions + local dipole kinematics

APOLLO to be released?

- dipole-antenna shower ordered in notion of p_{\perp}
- based on partitioned antenna functions + global dipole kinematics

Logarithmic accuracy

Parton showers and resummation

Conventional dipole(-like) showers are **inconsistent** with NLL resummation

Why care?

Impossible to ignore recent progress on logarithmically accurate showers (PanScales, ALARIC, HERWIG, Deductor, ...)

Improved formal control over shower and matching precision (consistency with resummation, higher-order matching, theoretical uncertainties, ...)

Main issue: local dipole recoil schemes are not NLL safe

(leaving problems with the correct assignment of $C_{\rm F}$ and $C_{\rm A}$ aside – noted already in [Gustafson NPB 392(1993)251])

But: very difficult to deal with rescaling when keeping phase space exact! Note: PanScales uses soft/collinear phase-space approximation Alternative solution: give up on emitter-recoiler-agnostic kinematics

(→ ALARIC [Herren et al. JHEP10(2023)091])

subsequent boost distributes transverse recoil among **all final-state particles** Note: analogous to dipole subtraction with identified hadrons [Catani, Seymour NPB485(1997)291]

Requires **partitioning** of antenna functions into $j \parallel i$ and $j \parallel k$ terms \Rightarrow APOLLO: Antenna Partitioning Overcoming Logarithmically Limiting Obstacles

Introduce auxiliary vector n_i^{μ} to partition soft term

$$\frac{2s_{ik}}{s_{ij}s_{jk}} = \frac{1}{s_{ij}}\frac{2s_{ik}(p_in_j)}{s_{jk}(p_in_j) + s_{ij}(p_kn_j)} + \frac{1}{s_{jk}}\frac{2s_{ik}(p_kn_j)}{s_{jk}(p_in_j) + s_{ij}(p_kn_j)}$$

Collinear terms straightforward $(1/s_{ij} vs 1/s_{jk})$

Two (partitioned) antenna functions / branching kernels

$$P_{qg}(p_i, p_j, p_k; n_j) = \frac{1}{s_{ij}} \left[\frac{2s_{ik}(p_i n_j)}{s_{jk}(p_i n_j) + s_{ij}(p_k n_j)} + \frac{s_{jk}}{s_{ijk}} \right]$$
$$P_{gg}(p_i, p_j, p_k; n_j) = \frac{1}{s_{ij}} \left[\frac{2s_{ik}(p_i n_j)}{s_{jk}(p_i n_j) + s_{ij}(p_k n_j)} + \frac{s_{jk}s_{ik}}{s_{ijk}^2} \right]$$

(Note: branching kernels implicitly depend on branching angle ϕ)

Evolution variable chosen in analogy to collinear limit of ARIADNE- p_{\perp}

$$t = (1 - z)s_{ij} = z(1 - z)2\tilde{p}_{ij}\tilde{K}$$

$$z = \frac{p_i n_j}{(p_i + p_j) n_j}$$

 $p_i n_j \neq 0, \, p_k n j \neq 0$

In practice:
$$n_j^\mu = K^\mu + p_j^\mu$$

Gluon splittings **irrelevant** for NLL consistency, because **purely collinear** Note: in principle all purely-collinear branchings irrelevant at NLL

Use kinematics with intrinsic $i \leftrightarrow j$ symmetry (i.e., $q \leftrightarrow \bar{q}$ symmetry)

$$p_i^{\mu} = a_i \tilde{p}_{ij}^{\mu} + b_i \tilde{K}^{\mu} - p_{\perp}^{\mu}$$

$$p_j^{\mu} = a_j \tilde{p}_{ij}^{\mu} + b_j K^{\mu} + p_{\perp}^{\mu}$$

$$K^{\mu} = (1 - a_i - a_j) \tilde{p}_{ij}^{\mu} + (1 - b_i - b_j) \tilde{K}^{\mu}$$

$$transverse recoil taken by \tilde{p}_{ij} (not NLL safe)$$

Branching kernel constructed as

$$P_{q\bar{q}}(p_{i}, p_{j}, p_{k}) = \frac{1}{s_{ij}} \left[1 - \frac{2s_{jk}s_{ik}}{s_{ijk}^{2}} \right]$$

Evolution variable $t = (1 - z)s_{ij}$ identical to gluon-emission case (not necessary, but simplifies multiplicative NLO matching)

Take limit $\alpha_s \to 0$ with $\lambda = \alpha_s \log(v) = \text{const to separate NLL terms in ratio} \frac{\Sigma^{\text{PS}}}{\Sigma^{\text{NLL}}}$

Numerically achieved by extrapolating results for small α_s in the limit $t_c \rightarrow 0$ (numerically quite challenging, done in dedicated python code)

NLL tests

APOLLO is consistent with NLL for wide range of global event shapes

Preliminary comparison to LEP data and default PYTHIA and VINCIA No dedicated tune, fix $a_{\text{Lund}} = 0.44$ and $b_{\text{Lund}} = 0.55$ based on "first bins" of event shapes @ LEP

NLO matching

Fixed-order calculations → hard jets
reliable at high scales, without scale hierarchies
accurate for limited number of legs (+ loops)
perturbative accuracy (LO, NLO, NNLO, ...)

Parton showers → jet substructure

- reliable at small scales, with scale hierarchies
- approximate predictions for many particles
- logarithmic accuracy (LL, NLL, NNLL, …)

 \Rightarrow large complementarity, so ideally combine them!

The simplest way to combine parton showers with fixed-order calculations: Matrix-element corrections (MECs)

Replace splitting functions (for first branching) by full matrix element.

Schematically:

$$\Delta(t_0, t_1) = \exp\left\{-\sum_{i} \sum_{j \neq i} \int_{t_1}^{t_0} d\Phi_{ij} C_{ij} P_{ij}(p_i, p_j, p_k; n_j) w_{\text{MEC}}(\Phi_{n+1})\right\}$$

with MEC factor:

$$w_{\text{MEC}}(\Phi_{n+1}) = \frac{R(p_1, \dots, p_{n+1})}{\sum_{i} \sum_{j \neq i} C_{ij} P_{ij}(p_i, p_j, p_k; n_j) B(\tilde{p}_1, \dots, \tilde{p}_n)}$$

For simple processes (colour-singlet decays/production), the MEC can be absorbed into the definition of the branching kernel.

E.g. $H \rightarrow qg\bar{q}$ (with non-vanishing Yukawa but kinematically massless quarks)

$$|\mathscr{M}_{H\to qg\bar{q}}|^{2} = \left(\frac{2s_{ik}}{s_{ij}s_{jk}} + \frac{s_{jk}}{s_{ij}s_{ijk}} + \frac{s_{ij}}{s_{jk}s_{ijk}} + \frac{2}{s_{ijk}}\right) |\mathscr{M}_{H\to q\bar{q}}|^{2}$$

$$P_{H\to qg\bar{q}}(p_{i}, p_{j}; p_{k}, n_{j}) = \frac{2s_{ik}(p_{i}n_{j})}{s_{ij}(s_{jk}(p_{i}n_{j}) + s_{ij}(p_{k}n_{j}))} + \frac{s_{jk}}{s_{ij}s_{ijk}} + \frac{1}{s_{ijk}}$$

$$P_{H\to qg\bar{q}}(p_{k}, p_{j}; p_{i}, n_{j}) = \frac{2s_{ik}(p_{k}n_{j})}{s_{ij}(s_{jk}(p_{i}n_{j}) + s_{ij}(p_{k}n_{j}))} + \frac{s_{ij}}{s_{jk}s_{ijk}} + \frac{1}{s_{ijk}}$$

In general:

Need to account for subleading-colour pieces with varying signs $(-1/N_{\rm C})^{\ell}$.

Kinematics explicitly depend only on p_i^{μ} , p_i^{μ} , and global reference K^{μ} .

Define colour-corrected branching kernel as

$$P_{ij}^{(cc)}(p_i, p_j; K) = \sum_{k \neq i, j} C_{ij,k} P_{ij}(p_i, p_j, p_k; K)$$

Since t and z are Lorentz invariant, the full-colour ME can be reproduced by

$$w_{\text{MEC}}^{(\text{FC})}(\Phi_{n+1}) = \frac{R(p_1, \dots, p_{n+1})}{\sum_{i} \sum_{j \neq i} \sum_{k \neq i, j} C_{ij,k} P_{ij}^{\text{trial}}(t, z) B(\tilde{p}_1, \dots, \tilde{p}_n)} \ge 0$$

$$t = (1 - z)s_{ij}, \ z = \frac{p_i n_j}{(p_i + p_j)n_j}$$

Multiplicative NLO+PS

Strategy developed > 20 years ago [Norrbin, Sjöstrand NPB603(2001)297-342]

Nowadays known as POWHEG matching [Nason JHEP11(2004)040]

Idea: first-order expansion of matrix-element-corrected shower reproduces NLO calculation if Born-level event is weighted by NLO *K*-factor:

$$\langle O \rangle_{\text{NLO}+\text{PS}}^{\text{POWHEG}} = \int d\Phi_2 \, B(\Phi_2) \, K_{\text{NLO}}(\Phi_2) \, \mathcal{S}_2(t_0, O; \Phi_2)$$

First-order MECs can easily be implemented via **finite terms** in branching kernels \Rightarrow for colour-singlet decays NLO matching automatic in PYTHIA

Multiplicative NLO+PS

Strategy developed > 20 years ago [Norrbin, Sjöstrand NPB603(2001)297-342]

Nowadays known as POWHEG matching [Nason JHEP11(2004)040]

Idea: first-order expansion of matrix-element-corrected shower reproduces NLO calculation if Born-level event is weighted by NLO *K*-factor:

$$\langle O \rangle_{\text{NLO+PS}}^{\text{POWHEG}} = \int d\Phi_n \, \mathcal{B}(\Phi_n) \, K_{\text{NLO}}(\Phi_n) \, \mathscr{S}_n(t_0, O; \Phi_n)$$

First-order MECs can easily be implemented via **finite terms** in branching kernels \Rightarrow for colour-singlet decays NLO matching automatic in PYTHIA

In general need:

- (1) Born-local NLO weight
- (2) Matrix-element correction in first branching

Multiplicative NLO+PS

Strategy developed > 20 years ago [Norrbin, Sjöstrand NPB603(2001)297-342]

Nowadays known as POWHEG matching [Nason JHEP11(2004)040]

Idea: first-order expansion of matrix-element-corrected shower reproduces NLO calculation if Born-level event is weighted by NLO *K*-factor:

$$\langle O \rangle_{\text{NLO+PS}}^{\text{POWHEG}} = \int d\Phi_n \, \mathcal{B}(\Phi_n) \, K_{\text{NLO}}(\Phi_n) \, \mathscr{S}_n(t_0, O; \Phi_n)$$

First-order MECs can easily be implemented via **finite terms** in branching kernels \Rightarrow for colour-singlet decays NLO matching automatic in PYTHIA

In general need:

- (1) Born-local NLO weight
- (2) Matrix-element correction in first branching \checkmark

Two general and NLL-safe schemes for multiplicative NLO matching:

Colour-ordered projectors

- same kinematics as in shower
- requires dedicated knowledge of colour structure

Born-local subtraction

- splitting kinematics (NLL unsafe!)
- NLL safety restored up to MEcorrected order

In both cases: POWHEG parton shower **identical** evolution variable in first branching and subsequent branchings Note: this means no mismatch, no need for PowhegHooks, no vetoed shower! Impose colour ordering on real matrix element

$$R(p_1, \dots, p_{n+1}) = \sum_{\ell=1}^m C^{(\ell)} R^{(\ell)}(p_1, \dots, p_{n+1})$$

and decompose each colour layer according to branching kernels

The real correction can then be integrated locally using shower kinematics

$$\Rightarrow \sum_{i} \sum_{j \neq i} \sum_{\ell} C^{(\ell)} \int d\Phi_{ij} \left[W_{ij}^{(\ell)} R^{(\ell)}(p_1, \dots, p_{n+1}) - P_{ij}(p_i, p_j; K) B(\tilde{p}_1, \dots, \tilde{p}_n) \right]$$

Apply rescaling in singular limits:

soft:
$$E_j \to x E_j$$
, collinear: $\sqrt{s_{ij}} \to x \sqrt{s_{ij}}$

and express convergence in number of agreeing digits

In analogy to local analytic sector subtraction introduce sector functions [Magnea et al. JHEP12(2018)107]

$$R(p_1, \dots, p_{n+1}) = \sum_{i} \sum_{j \neq i} W_{ij}^{\text{sct}} R(p_1, \dots, p_{n+1}) \text{ with } \sum_{i} \sum_{j \neq i} W_{ij}^{\text{sct}} = 1$$

and construct subtraction term as

$$K_{ij}(p_1,\ldots,p_{n+1}) := \left(S_j^{\downarrow} + C_{ij}^{\downarrow} - S_j^{\downarrow}C_{ij}^{\downarrow}\right) R(p_1,\ldots,p_{n+1}) W_{ij}^{\text{sct}}$$

 S_i^{\downarrow} : projector into *i*-soft limit C_{ij}^{\downarrow} : projector into *i* || *j* limit

The real correction can then be integrated locally

$$\Rightarrow \sum_{i} \sum_{j \neq i} \int \mathrm{d}\Phi_{ij} \left[W_{ij}^{\mathrm{sct}} R^{(\ell)}(p_1, \dots, p_{n+1}) - K_{ij}(p_1, \dots, p_{n+1}) \right]$$

But requires NLL unsafe splitting kinematics for $i \leftrightarrow j$ symmetry!

The first ("POWHEG") branching is generated with NLL unsafe splitting kinematics:

$$p_{i}^{\mu} = a_{i}\tilde{p}_{ij}^{\mu} + b_{i}\tilde{K}^{\mu} - p_{\perp}^{\mu}$$

$$p_{j}^{\mu} = a_{j}\tilde{p}_{ij}^{\mu} + b_{j}K^{\mu} + p_{\perp}^{\mu}$$

$$K^{\mu} = (1 - a_{i} - a_{j})\tilde{p}_{ij}^{\mu} + (1 - b_{i} - b_{j})\tilde{K}^{\mu}$$

Subsequent branchings are generated with NLL safe radiation kinematics:

$$\begin{split} p_{i}^{\mu} &= z \tilde{p}_{ij}^{\mu} \\ p_{j}^{\mu} &= a \tilde{p}_{ij}^{\mu} + b K^{\mu} + p_{\perp}^{\mu} \\ K^{\mu} &= (1 - z - a) \tilde{p}_{ij}^{\mu} + (1 - b) \tilde{K}^{\mu} - p_{\perp}^{\mu} \end{split}$$

No mismatches due to evolution in single measure $t = (1 - z)s_{ij}$

The shower expansion reproduces the correct strongly-ordered matrix element in all configurations where subsequent emissions are well separated in at least one direction in the Lund plane! Apply rescaling in singular limits:

soft:
$$E_j \to x E_j$$
, collinear: $\sqrt{s_{ij}} \to x \sqrt{s_{ij}}$

and express convergence in number of agreeing digits

$$\log_{10}(|1 - R|) \text{ with } R = \frac{K_{ij}(p_1, \dots, p_{n+1})}{W_{ij}^{\text{sct}}R(p_1, \dots, p_{n+1})}$$

Towards NNLO matching

[Campbell, Höche, Li, CTP, Skands PLB836(2023)137614]

Idea: fully-differential multiplicative NNLO matching scheme ("POWHEG at NNLO")

$$\langle O \rangle_{\text{NNLO+PS}}^{\text{VINCIA}} = \int d\Phi_2 B(\Phi_2) K_{\text{NNLO}}(\Phi_2) \mathcal{S}_2(t_0, O; \Phi_2)$$

Need:

- (1) Born-local NNLO K-factor
- (2) NLO Matrix-element correction in first branching
- (3) LO Matrix-element correction in second iterated branching
- (4) Direct $2 \mapsto 4$ branching with Matrix-element correction

(1) Born-local NNLO K-factor

$$\begin{split} k_{\rm NNLO}(\Phi_2) &= 1 + \frac{V(\Phi_2)}{B(\Phi_2)} + \frac{I_{\rm S}^{\rm NLO}(\Phi_2)}{B(\Phi_2)} + \frac{VV(\Phi_2)}{B(\Phi_2)} + \frac{I_{\rm T}(\Phi_2)}{B(\Phi_2)} + \frac{I_{\rm S}(\Phi_2)}{B(\Phi_2)} \\ &+ \int d\Phi_{+1} \left[\frac{R(\Phi_2, \Phi_{+1})}{B(\Phi_2)} - \frac{S^{\rm NLO}(\Phi_2, \Phi_{+1})}{B(\Phi_2)} + \frac{RV(\Phi_2, \Phi_{+1})}{B(\Phi_2)} - \frac{T(\Phi_2, \Phi_{+1})}{B(\Phi_2)} \right] \\ &+ \int d\Phi_{+2} \left[\frac{RR(\Phi_2, \Phi_{+2})}{B(\Phi_2)} - \frac{S(\Phi_2, \Phi_{+2})}{B(\Phi_2)} \right] \end{split}$$

Fixed-Order Coefficients:

Subtraction Terms (not tied to shower formalism):

Note: requires Born-local subtraction. In the antenna formalism only given for simplest cases!

1

 t_2

Key aspect:

up to matched order, include process-specific NLO corrections into shower evolution

(2) correct first branching to exclusive NLO rate

$$\Delta_{2\mapsto3}^{\text{NLO}}(t_0, t_1) = \exp\left\{-\int_{t_1}^{t_0} d\Phi_{+1} \frac{R(\Phi_3)}{B(\Phi_2)} \left(1 + w_{\text{RV}}(\Phi_3)\right)\right\} \qquad t_0 \qquad \text{RV}$$

(3) correct second branching to LO matrix element

$$\Delta_{3\mapsto4}^{\mathrm{LO}}(t_1, t_2) = \exp\left\{-\int_{t_2}^{t_1} \mathrm{d}\Phi_{+1} \frac{\mathrm{RR}(\Phi_4)}{\mathrm{R}(\Phi_3)}\right\}$$

(4) add $2 \mapsto 4$ branching and correct it to LO matrix element

$$\Delta_{2\mapsto4}^{\text{LO}}(t_0, t_1) = \exp\left\{-\int_{t_2}^{t_0} d\Phi_{+2} \frac{\text{RR}(\Phi_4)}{B(\Phi_2)}\Theta(t_2 - t_1)\right\} \qquad t_1 \checkmark t_2 \quad \text{RR}$$

RR

Real-virtual correction factor $w_{\rm RV}$ ("POWHEG in the exponent") studied analytically

Now generalisation & semi-automation in form of NLO MECs

Direct $2 \mapsto 4$ shower fills unordered region of phase space with $p_{\perp,4}^2 > p_{\perp,3}^2$

Sectorisation enforces a strict cutoff at $p_{\perp,4}^2 = p_{\perp,3}^2$. No recoil effects!

VINCIANNLO in resonance decays

By construction decay width is NNLO accurate.

NNLO Born accuracy also implies NLO accuracy in first branching and LO accuracy in second branching.

E.g. $H \rightarrow b\bar{b}j$ at parton level (massless b-quarks with non-vanishing Yukawa) vs. NLO from [Coloretti, Gehrmann-De Ridder, CTP JHEP06(2022)009]

Conclusions

Antenna showers are rooted in the soft limit.

Emitter-recoiler-agnostic antenna kinematics interpolate between dipole kinematics.

When aiming for formal NLL accuracy, the emitter-recoiler-agnostic picture may not be kept alive at the same time as keeping the phase space exact.

Even with global "dipole-like" kinematics, a close connection to physical matrix elements/antenna functions can be kept intact.

Antenna showers offer a promising candidate for general NNLO matching.