
MD13547 Measurement and correction of weak/strong long-range beam-beam continued

E.H.Maclean, T.H.B Persson, R. Tomas and the OMC team

Motivation

- Long-range beam-beam strongly drives specific nonlinear resonances – in particular 3Qy which is close to WP
- 3Qy variously linked to lifetime and collimator hierarchy breakage (Qy dependence, Q' mitigation, a3 mitigation, on-disp)
- MD12263 in MD2 we performed first ever measurements of LRBB driven resonances in Beam2

Physics motivation:

→ measure shift to LHCB1 resonance strength caused by LRBB to allow quantitative benchmarking w.r.t. simulation tools

Operational motivation

 \rightarrow test compensation of the beam-beam resonances using the existing corrector magnets

 \rightarrow if successful can look to use in operation in coming years \rightarrow significant change to OMC strategy for LHC and future colliders

Very similar procedure to MD12263 performed in MD2

→ RMPP review performed on 10/05/24 https://indico.cern.ch/event/1418360/

- In previous MD performed classic OMC measurements (linear optics and RDTs) on low-intensity Beam2, which was in collision with high-intensity train in Beam1
- In this MD plan to perform same weak-strong measurements, but reversing the beam-roles over 2 fills.
- In low-intensity beam have 3 pilots.
 - 1 x no collisions
 - 1 x full LR in IP1/5
 - 1 x partial LR in IP1/5

For second fill use same filling scheme as previous MD: BBMD_36b-trains-In-B1-INDIVS-in-B2_v2 For first fill use equivalent but with Beam1/2 roles swapped

Fill 1:

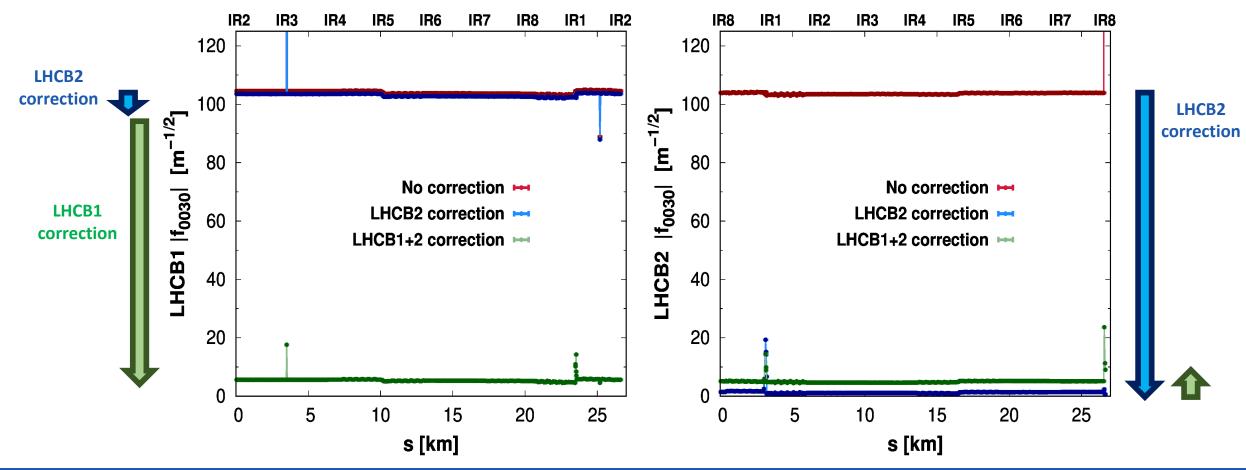
Beam1: 3 pilots 10^{10} p/bsafe beam flagNLO collimatorsACD kicksMO offBeam2: 144 nominal 1.6×10^{11} p/bunsafe beamnominal collimatorsNo kicksMO on

Fill 2:

- Beam1: 144 nominal $1.6 \times 10^{11} \text{ p/b}$ unsafe beam nominal collimators No kicks MO on
- Beam2: 3 pilots 10^{10} p/b safe beam flag NLO collimators ACD kicks MO off

Safe-beam flag on weak-beam (B1 in Fill1, B2 in Fill2)

Remove common BPM from OFB


- Prior to measuring remove strong-beam collimators from NLO 30cm HW group
 - ightarrow playing NLO 30cm sequence then allows to go to NLO in only 1 beam
 - \rightarrow strong beam has unsafe beam flag so all collimator interlocks active

■ Identified corrections in LRBB simulations for 3Qy resonance driven by beam-beam using the MCSSX a3 correctors in IR1 → validate correction performance in this MD

LHCB1

LHCB2

3Qy correction (new procedure vs MD2):

- Done via trims of MCSSX (a3 correctors) left/right of IP1
 - \rightarrow MCSSX are not interlocked in operation
- Max trim of 45A, trimmed in in steps, correcting Q with MQT to maintain constant WP

 Ramp rate of MCSSX is < 25A/min</p>
- BBLR correction with MCSSX about 5x stronger than lattice MCSSX corrections previously trimmed in during operation
- Predicted feed-down below 6% peak beta-beat, well below peak beta-beat generated by LR-beam-beam

complementary request:

MD13945 Long-range beam-beam RDT compensation

Test implementation of the MCSSX corrections at end-of-fill

- \rightarrow Stepping stone to potential use of MCSSX corrections in operation in 2025
- \rightarrow Trim in the Long-range-3Qy correction and see if any impact observed at end of fill
- → In practice BBLR effect on RDT will scale with intensity, so expect significantly reduced impact at end-of-fill

If previous MD taken in MD5, EoF study would be done before the dedicated test

Key Points (as in MD2)

- PP end of fill MD, with full machine
- No feed-back changes
- Due to lower intensity increase Qy to try and see some degradation of lifetime approaching 3Qy resonance. Typically might expect Qy change around few 10⁻³ (on scale of OP lifetime optimization trims)
- Apply LHCB1 and LHCB2 LRBB 3Qy corrections slowly in steps, applying tune corrections with MQT to maintain constant WP. Observe any impact on beam.
- Apply inverse correction to purposefully degrade 3Qy if allowed by MPP?

Key points

- Same 3Qy correction principle as described previously
- Using MCSSX (a3 corrections) left/right of IP1. Same ramp rates as described previously.
- Correction at 1.6e11 p/b expected to be scaled down for surviving intensity at EoF

	Combined LHCB1/2 correction @ 1.6e11 p/bunch [k] , [A]		2/3 correction anticipated at end-of-fill [k] , [A]
RCSSX.3L1	$-0.012[m^{-3}]$	-36[A]	-24[A]
RCSSX.3R1	$+0.009[m^{-3}]$	+27[A]	+18[A]

Predicted beta-beat due to feed-down from MCSSX trim is <6% for full correction</p>

