

Tier-0 Batch Computing

Ben Jones IT-CD-CC

CE/RW
L
N

CERN Batch System

The CERN accelerator complex
Complexe des accélérateurs du CERN

The WLCG

y TH2

T AWAKE Tier-2 sites
L= (about 160)
MEDICIS
E
1SOLDE - - 5
Y Em ror e i Tier-1 sites

RB{BE : . 10 GbJs links
n_TOF A i /4_: :

£ S pa—
= m?g““) -------------------

CLEAR
LEIR —T
ETEEE e

b H (hydrogen anions) b ions b RIBs Radioaciive hon Beams) b 0 ineul b P lantiprodoms) b e ielecirons b u imuons)

JCLEAR - CERM Linear
HIE-ISOLDE - Radioactive

LHC - Large Hadron Collider & 5PS - Super Praton Syncheotron & PS - Prodon Synchrotron # AD - Anfiproton Decelerate

Blectron Accelerator for Research /f AWAKE - ced WAKefield Experiment & ISOLDE - lsotope Separator OnlLine

EXperiment/High Intensity and En SOLDE & MEDICIS & LEIR = Lonw Energy lon Bing & LINAC - LiNear ACcelerator i

Local Production User analysis

C\E/RW 3

What does It consist of?

Access Points / Submit Side / Control plane | Execution Side

+ "”Jobs” are submitted to APs, aka « Batch worker are (now) physical
“schedds” or “CEs” machines
« Whatis a job? Can be some code to execute with some input / * Intel machines at ~10HS/core or AMD at ~16

output expectations. Can also be a “pilot” or “glidein” —

) S : « Around 2.5 -> 3Gb RAM/ core
essentially an agent for another task submission service

* A’schedd” runs a shadow process for every “job” running on o : ” 2L,
the execute side. A“CE" is merely “a schedd that can talk to What is a "slot™

the grid”. « Vague term for what in WLCG counts as a normal unit of
. Scale point; each shadow requires 0.5->1mb of memory. compute: 1 core + 2-3Gb memory + 20GiB scratch disk
Horizontally scalable « Importantly: we give 100 cpu_shares (ie cgroup share equiv to
1cpu)

« Collector / Negotiator

o (K 1”9
« Stateless machines that “collect” all the info about machines mcore :
and jobs and match them « To ease use on WLCG “mcore” or “multicore slots” usually
« Ultimate scale point of a “pool”: collector update time means 8 cores (or core equivalents)

N

) 4

What is a job at CERN?

Physicist with a submit file, sending a job via an AP (all our submission is remote...)
« An experiment’s production jobs, sent by “submission framework” via an AP

« ATLAS sending jobs (real jobs) via Grid to CEs

 ALICE/LHCDb sending non-condor pilots via Grid to CEs

« CMS sending glideins via Grid to CEs

A physicist with a metascheduler sending workers via an AP

Building Blocks: OpenStack Ironic

Bare-metal batch worker
nodes provisioned by
OpenStack Ironic

Having cloud APIs to build
machines is helpful for us to
manage scale

Separated into distinct
“projects” or “tenants” of
similar machines, with an IP
service (often around ~200)

C@
\

Building Blocks: terraform

iac-cern-vm-tenant /| Schedules

L4 EaCh OpenStaCk prOJeCt |S All 65 Active Inactive

b u I It 0 Ut by a- G Itl ab - C I J O b Description Target Last Pipeline Next Run Owner

running terraform -Batch - PDC Project 021 - Physcal Yoo @pwd) n13hours P N o)

IT-Batch - PDC Project 028 - Physical % master @ Passed in 12 hours

B
=]

« terraform builds out to fill the
q Uota Of the prOJeCt IT-Batch - PDC Project 031 - Physical % master @ Passed in 17 hours

B
(=]

IT-Batch - PDC Project 024 - Physical % master @ Passed in 16 hours

B
E

* Machines are rebuilt every
n |g ht |f th ey have been IT-Batch - PDC Project 026 - Physical % master @ Passed in 13 hours
repaired

B
(=]

IT-Batch - PDC Project 023 - Physical % master @ Passed in 14 hours

&
B

IT-Batch - PDC Project 029 - Physical % master @ Passed in 12 hours

B
(=]

Cﬁw
\

LxBatch cores ~5y

HTCondor - Pools cores (stacked) &

440 K
420 K

400 K

b

380K
360K

340K
320K m
300k

280K

260 K

240K

220K

200K

180 K

160 K

140 K
120 K
100 K
80K
60K
40K
20K

12/2019 03/2020 06/2020 08/2020 12/2020 03/2021 06/2021 08/2021 1212021 03/2022 0B/2022 08/2022 12/2022 03/2023 06/2023 08/2023 12/2023 03/2024 06/2024 08/20
== Shared == Dedicated

CE/RW
\

HTCondor @ CERN 4 HTCondsr

Software Suite

« HTCondor used at CERN since 2016

« Used for “high throughput” workload. For HPC workload (read: code that runs on
multiple computers ie MPIl) we use SLURM
 We use htcondor CE as the “Access Point” or “Compute Element” for grid jobs

» https://htcondor.org/htcondor-ce/overview/
» For us: easier to have same middleware provider for both (though others in WLCG do use ARC)

European community very HEP focused
* Workshop next week: https://indico.cern.ch/event/1386170/

Upstream & user mailing list responsive
» https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users

CE/RW
L
N

https://htcondor.org/htcondor-ce/overview/
https://indico.cern.ch/event/1386170/

Central Managers

 Lots of effort spent scaling, unlikely to be a
problem for smaller pools
 CMS global pool & (to lesser extent) CERN
encounter most of the issues
« Key metrics:
* Negotiation cycle time: how long it takes for
each cycle to match jobs with open slots.
e aim 3-5 mins, now v easy with threads,
we run NEGOTIATOR_NUM_THREADS = 8
* DutyCycle of collectors, if it hits 1, the
collector is missing updates
« We have “sub collectors” reporting into a
top level colllectors, but this is probably
only necessary after 1000 startds
reporting
* No real state to worrry about

@@E\ 10

Sub Collectors

Send jobs to reserved
pslot

Submit side

Pull list of
"7~ idle jobs

~

~
-~

= -

Send machine properties

(ClassAds)

-

Batch workers

« The WLCG standard is still (I believe):
Distribution of memory per core « 2Gb memory per core + 20GiB disk per core

 We are at (at least) 3Gb per core + 30GiB of disk

Mix of older Intel (around 11.5 HS / core) and newer AMD EPYC
v3 (16 HS / core)

We have some aarch64 (around 2k cores) but only ATLAS ready

for production at this point

« HTCondor uses CGroups, cpu shares/weights v easy

| 5000 3000 4000
514 (10.9%) ’1,517(32.2%) 2,626 (55.7%)

O O O * Though easier the more homogenous workflow

(C\E/RWE\ 12

« Cgroupv2 for memory (currently) more of a challenge

Cluster health — efficiency

 CPU Efficiency (cpu / wall)

| Data updated 22/08/24 ~

Job Type is expected to have different Y S,
efficiency (ie Simulation > Reco > analysis) e
. . A ~ [] Departments
Opaque to sites with Pilot Jobs o
ALICE
Efficiency could point at other scale / capacity gi-"
issues M Lo
~ [] Other VOs
« Network? Has been “free” till now, do we e
have easy way to correlate? 1
2
Efficiency is calculated from accounting .
records so can be affected by reporting 5

B Chatin Teams Q' Get insights

Q Search

(@ Subscribe toreport 01 Setalert .-+

Sum of Wall (H523 Hours) and Sum of Pledge by Day

Sum of Wall (H523 Hours) ®Sum of Pledge

Sum of Wall (HS23 Hours)

100M

50M

oM
0

20 25 30
Day

® m L 2 &

o copict @ - O © &2

Sum of Num Jobs by Charge Group

LHCB 11.01%

ALICE
17.26%

ATLAS 25.72%

CMS

46.01%

Charge Group
®CMS

@ ATLAS
@®ALICE

@®LHCE

Issues from htcondor version

1,500M

 We check accounting data for unusual Sum of Plcige
efficiencies 081

* Cross checks with efficiency from monitoring Eficiency

Sum of CPU (HSZ3 Hours), Sum of Wall {HS23 Hours) and Efficiency by Day

Sum of CPU (HS23 Hours) and Sum of Wal...

Sum of CPU {HS23 Hours)

100M

50M

Sum of Wall (HS23 Hours) ®Efficienc y

Rl (1 RS B ey

20 25 30

~ 0o

Fificiancv

Sum of Wall (HS23 Hours) by Charge Group

2.63bn

Sum of CPU (HS23 Hours)

3.24bn

Sum of Wall (HS23 Hours)

C@
\

13

CEs

We have 2 separate HTCondor pools

« “Share”
 All jobs can run on all machines Users /
. experiments
» Quotas fairshared @CERN _
» “Dedicated”

« Machines are dedicated to specific
experiments ﬁ>
« CMS machines only take CMS monmca

jobs for example
Other than scale, some beneits ,
 On share we need to have ﬁ> e J

standards for multicore (ie 8 core g y
jobs) to ensure we can defrag , J Dedicated pool

"

ap p ro p rl ate Iy I::> HTCONDOR-CE
 On dedidated, CMS use “whole @ .)
node” pilots, which reduces # of

jobs for us, more flexible for CMS

~75k cores

CE/RW
\

14

Scaling CEs (or any other schedd)

In HTCondor, the condor_schedd process manages the job queue

CEs or schedds are horizontally scalable
* Increasing does increase load on collector / negotiator
« We have 18 CEs and 20 schedds

Scale is down to the “condor_shadow” size

* Every running job has its shadow on the submitting schedd/CE

* Roughly 500kb for a shadow (or closer to 1mb for a shadow with Kerberos)

« We use VMs and more or less aim for 10k running jobs

« Could use fewer, bigger machines, it's more about manageability than anything else

Token authentication for the Ces

* Mapping for token IDs via /etc/condor-ce/mapfiles.d/10-scitokens.conf

CE/RW
L
N

15

Pool authentication

« We use kerberos for pool auth

KERBEROS "host/b9g@0p4763.cern.ch@CERN.CH" worker-node@cern.ch

 Probably not what I’d do unless | had a pre existing Active Directory / kerberos setup

« HTCondor IDTokens are probably what similar sites to yours would do

 We have previously used GSI (ie SSL based)

« Again, based on our pre-existing infrastructure, in this case “grid certificates”

e Password authentication easiest, but IDToken an enhancement

« CERN not the best examplar as we have lots of pre-existing infra

CE/RW
\

16

mailto:worker-node@cern.ch

Monitoring

DaemonCore Duty Cycle

schedds.bigbird11_cern_ch

ERN_Condor_Share-tweetybird04_cern_ch

rs.CERN_Condor_? e-tweetybird03_cern_ch

OTIATORC-tweetybird04_cern_ch

3_cern_ch

HTCondor expose lots of metrics from
various daemons

« This is the famous “DutyCycle” which is the most
obvious metric for a busy daemon

HTCondor has python bindings, lots of
monitoring (including ours) use python
to push metrics to be displayed in
Grafana

o https://htcondor.readthedocs.io/en/lts/apis/pytho
n-bindings/index.htm|

For more "plug & play” there’s
condor_gangliad

o https://htcondor.readthedocs.io/en/lts/admin-
manual/monitoring.htmi

« We don'’t use ganglia (at least not for this)

17

https://htcondor.readthedocs.io/en/lts/apis/python-bindings/index.html
https://htcondor.readthedocs.io/en/lts/admin-manual/monitoring.html

Less standard use of htcondor

« HTCondor is very flexible, can take advantage of opportunistic resources

e Other things we do (or have done) with HTCondor:

» Backfill SLURM slots via condor_gridmanager

Run on public cloud resources

« Both with VPNs and also across firewalls

« condor_annexe also exists, but is not our usecase

* Run on short term preemptible resources

* Run workers on kubernetes

» Use DASK metascheduler to run DASK workers as HTCondor "jobs”
* Run htcondor jobs in containers on fileservers

* [l must be missing other examples]

18

eeeeeeeee

