

Tier-0 Batch Computing
Ben Jones IT-CD-CC

2

CERN Batch System

The WLCG

3

Local Production User analysis

What does it consist of?

Access Points / Submit Side / Control plane

• ”Jobs” are submitted to APs, aka
“schedds” or “CEs”

• What is a job? Can be some code to execute with some input /

output expectations. Can also be a “pilot” or “glidein” –

essentially an agent for another task submission service

• A ”schedd” runs a shadow process for every “job” running on

the execute side. A “CE” is merely “a schedd that can talk to

the grid”.

• Scale point: each shadow requires 0.5->1mb of memory.

Horizontally scalable

• Collector / Negotiator

• Stateless machines that “collect” all the info about machines

and jobs and match them

• Ultimate scale point of a “pool”: collector update time

| Execution Side

• Batch worker are (now) physical
machines

• Intel machines at ~10HS/core or AMD at ~16

• Around 2.5 -> 3Gb RAM / core

• What is a ”slot”?

• Vague term for what in WLCG counts as a normal unit of

compute: 1 core + 2-3Gb memory + 20GiB scratch disk

• Importantly: we give 100 cpu_shares (ie cgroup share equiv to

1cpu)

• “mcore”?

• To ease use on WLCG “mcore” or “multicore slots” usually

means 8 cores (or core equivalents)

4

• Physicist with a submit file, sending a job via an AP (all our submission is remote…)

• An experiment’s production jobs, sent by “submission framework” via an AP

• ATLAS sending jobs (real jobs) via Grid to CEs

• ALICE / LHCb sending non-condor pilots via Grid to CEs

• CMS sending glideins via Grid to CEs

• A physicist with a metascheduler sending workers via an AP

What is a job at CERN?

5

Building Blocks: OpenStack Ironic

6

• Bare-metal batch worker

nodes provisioned by

OpenStack Ironic

• Having cloud APIs to build

machines is helpful for us to

manage scale

• Separated into distinct

“projects” or “tenants” of

similar machines, with an IP

service (often around ~200)

Building Blocks: terraform

7

• Each OpenStack project is

built out by a Gitlab-CI job

running terraform

• terraform builds out to fill the

quota of the project

• Machines are rebuilt every

night if they have been

repaired

LxBatch cores ~5y

8

• HTCondor used at CERN since 2016

• Used for “high throughput” workload. For HPC workload (read: code that runs on
multiple computers ie MPI) we use SLURM

• We use htcondor CE as the “Access Point” or “Compute Element” for grid jobs

• https://htcondor.org/htcondor-ce/overview/

• For us: easier to have same middleware provider for both (though others in WLCG do use ARC)

• European community very HEP focused

• Workshop next week: https://indico.cern.ch/event/1386170/

• Upstream & user mailing list responsive

• https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users

HTCondor @ CERN

9

https://htcondor.org/htcondor-ce/overview/
https://indico.cern.ch/event/1386170/

Central Managers

10

• Lots of effort spent scaling, unlikely to be a

problem for smaller pools

• CMS global pool & (to lesser extent) CERN

encounter most of the issues

• Key metrics:

• Negotiation cycle time: how long it takes for

each cycle to match jobs with open slots.

• aim 3-5 mins, now v easy with threads,

we run NEGOTIATOR_NUM_THREADS = 8
• DutyCycle of collectors, if it hits 1, the

collector is missing updates

• We have “sub collectors” reporting into a

top level colllectors, but this is probably

only necessary after 1000 startds

reporting

• No real state to worrry about

Sub Collectors

11

Batch workers

12

• The WLCG standard is still (I believe):

• 2Gb memory per core + 20GiB disk per core

• We are at (at least) 3Gb per core + 30GiB of disk

• Mix of older Intel (around 11.5 HS / core) and newer AMD EPYC

v3 (16 HS / core)

• We have some aarch64 (around 2k cores) but only ATLAS ready

for production at this point

• HTCondor uses CGroups, cpu shares/weights v easy

• Cgroupv2 for memory (currently) more of a challenge

• Though easier the more homogenous workflow

Cluster health – efficiency

13

• CPU Efficiency (cpu / wall)

• Job Type is expected to have different

efficiency (ie Simulation > Reco > analysis)

• Opaque to sites with Pilot Jobs

• Efficiency could point at other scale / capacity

issues

• Network? Has been “free” till now, do we

have easy way to correlate?

• Efficiency is calculated from accounting

records so can be affected by reporting

issues from htcondor version

• We check accounting data for unusual

efficiencies

• Cross checks with efficiency from monitoring

CEs

14

Shared Pool

~325k cores

Dedicated pool

~75k cores

• We have 2 separate HTCondor pools

• “Share”:

• All jobs can run on all machines

• Quotas fairshared

• “Dedicated”

• Machines are dedicated to specific

experiments

• CMS machines only take CMS

jobs for example

• Other than scale, some beneits

• On share we need to have

standards for multicore (ie 8 core

jobs) to ensure we can defrag

appropriately

• On dedidated, CMS use “whole

node” pilots, which reduces # of

jobs for us, more flexible for CMS

• In HTCondor, the condor_schedd process manages the job queue

• CEs or schedds are horizontally scalable

• Increasing does increase load on collector / negotiator

• We have 18 CEs and 20 schedds

• Scale is down to the “condor_shadow” size

• Every running job has its shadow on the submitting schedd/CE

• Roughly 500kb for a shadow (or closer to 1mb for a shadow with Kerberos)

• We use VMs and more or less aim for 10k running jobs

• Could use fewer, bigger machines, it’s more about manageability than anything else

• Token authentication for the Ces

• Mapping for token IDs via /etc/condor-ce/mapfiles.d/10-scitokens.conf

Scaling CEs (or any other schedd)

15

• We use kerberos for pool auth

KERBEROS "host/b9g00p4763.cern.ch@CERN.CH" worker-node@cern.ch

• Probably not what I’d do unless I had a pre existing Active Directory / kerberos setup

• HTCondor IDTokens are probably what similar sites to yours would do

• We have previously used GSI (ie SSL based)

• Again, based on our pre-existing infrastructure, in this case “grid certificates”

• Password authentication easiest, but IDToken an enhancement

• CERN not the best examplar as we have lots of pre-existing infra

Pool authentication

16

mailto:worker-node@cern.ch

Monitoring
• HTCondor expose lots of metrics from

various daemons

• This is the famous “DutyCycle” which is the most

obvious metric for a busy daemon

• HTCondor has python bindings, lots of
monitoring (including ours) use python
to push metrics to be displayed in
Grafana

• https://htcondor.readthedocs.io/en/lts/apis/pytho

n-bindings/index.html

• For more ”plug & play” there’s
condor_gangliad

• https://htcondor.readthedocs.io/en/lts/admin-

manual/monitoring.html

• We don’t use ganglia (at least not for this)

17

https://htcondor.readthedocs.io/en/lts/apis/python-bindings/index.html
https://htcondor.readthedocs.io/en/lts/admin-manual/monitoring.html

• HTCondor is very flexible, can take advantage of opportunistic resources

• Other things we do (or have done) with HTCondor:

• Backfill SLURM slots via condor_gridmanager

• Run on public cloud resources

• Both with VPNs and also across firewalls

• condor_annexe also exists, but is not our usecase

• Run on short term preemptible resources

• Run workers on kubernetes

• Use DASK metascheduler to run DASK workers as HTCondor ”jobs”

• Run htcondor jobs in containers on fileservers

• [I must be missing other examples]

Less standard use of htcondor

18

home.cern

