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Problem 1. Write down Hamilton’s equations for the following Hamiltonians
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Two masses are hanging via a massless string from a frictionless
pulley, The kinetic energy of the masses is
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2, (1)

while the potential energy is

V = −m1gx1 −m2gx2. (2)

We selected V = 0 at the centre of the pulley. The system is sub-
jected to the constraint x1 + x2 = l = constant. Write down the
Lagrangian using the constraint to reduce the number of vari-
ables. Calculate the conjugate momentum and convert to the
Hamiltonian. Finally, write down Hamilton’s equations.

Problem 3. Show that the following transformation from (q,p) to (Q,P) is canonical

P = 2(1 +
√
q cos p)

√
q sin p, Q = ln(1 +

√
q cos p)

by checking if the Poisson bracket [Q,P ]q,p = 1. Verify that the following type 3 generating function F3(p,Q)
corresponds to this transformation.

F3(p,Q) = −
(
eQ − 1

)2
tan p

Problem 4. The Hamiltonian of a normal octupole magnet can be written

H4 =
q

p

b4
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x4 − 6x2z2 + z4

)
(3)

where q is the particle charge, p is the momentum, (x, z) are the horizontal and vertical coordinates and
the octupole strength b4 is constant along the magnet length L. The coordinates can be written in terms of
action-angle coordinates (Jx, φx), (Jy, φy) via

x(s) =
√

2Jxβx(s)cosφx (4)

y(s) =
√

2Jyβy(s)cosφy (5)

where βx,y are betatron functions. Find the averaged Hamiltonian 〈H4〉 by evaluating
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Note, integrals of the cosine function such as
∮

cos4φdφ = 3π
4 will be useful. Then using the relation for the

tune shift in each transverse plane ∆Qx,y
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show that
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where B4 is the integrated octupole strength (B4 = b4L).

Problem 5. Optional bonus problem! An idealised kick rotator may be represented by the following discrete
map

θn+1/2 = θn + 0.5 ∗K ∗ pn (10)

pn+1 = pn −K sin θn+1/2 (11)

θn+1 = θn+1/2 + 0.5 ∗K ∗ pn+1 (12)

Write a code (e.g. in Python) to iterate this map a few hundred times starting with a set of starting
coordinates (p0, θ0) that form a regular grid covering the range (−π, π) in both phase space coordinates.
Ensure that tracked coordinates (both p and θ) are always in the range (−π, π). Here the following python
function is useful for wrapping a variable x between bounds (a,b):

wrap = lambdax, a, b : ((x− a) % (b− a) + a) (13)

Plot the coordinates after each iteration on a single phase space figure (don’t join the points for best results).
Repeat for various values of K (K << 1, K ∼ 1 and K > 1). You should observe bounded motion within a
separatrix for K << 1 but increasing levels of chaos as K increases above 1.

Note, this map relates to longitudinal dynamics in a stationary bucket where the kick corresponds to RF
cavities that impart a change in momentum at discrete points in the ring.
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