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Deriving the Hamiltonian for an accelerator

• Goal:  build a Hamiltonian map to represent entire ring. 

• Starting point – the Hamiltonian for a relativistic particle in an electromagnetic field H(q,P,t).

• Apply following steps
1. Transform into convenient coordinates (Frenet-Serret).

2. Change the independent variable from time to longitudinal coordinate “s”.

3. Convert to small dynamic variables with respect to reference momentum (allows us to expand the square root).

4. Introduce convenient longitudinal coordinates.
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Particle in a general electromagnetic field

• The Lagrangian for a free particle in a general EM field U(x, x ̇, t) = e(φ − v · A) is given

• Calculate the conjugate momentum as usual. Note the vector potential contributes to the momentum!

• The Hamiltonian is given by

which can be written (using                                              )
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Step 1: Change coordinate system

Along a reference orbit r0, define set of orthogonal unit vectors Ƹ𝑠, ො𝑥, Ƹ𝑧. These vectors form
the basis of the Frenet-Serret curvilinear coordinate system.

where ρ(s) is the local curvature.

In order to express the conjugate momentum P and vector potential A in these coordinates perform a canonical 
transformation. It can be shown that the resulting Hamiltonian is 
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Step 2: Change of independent variable

• It is convenient to change the independent variable from time t to location around the ring (”s”). 

• To do this, rearrange equation so that -ps is on the LHS. Define this the new Hamiltonian H1.

• Now the old Hamiltonian is one of the canonical variables which are now

• Since the independent coordinate is now in units of distance rather than time, the equations of motion are written
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Step 3: Introduce reference momentum

• Normalise variables with respect to reference momentum P0. Usually, we can assume small deviations from 
the reference momentum.
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• Note – in the following slides the tilde is omitted.

• Updated Hamiltonian (where h = 1/ρ)



Step 4: Change longitudinal coordinates

• Beam has a time and energy spread around a reference particle. Introduce scaled time deviation τ and 
energy deviation pτ. Note: here we follow the nomenclature of the Xsuite Physics guide (page 9)* 

• The Hamiltonian for a general accelerator element H(x, px, y, py, τ, pτ) is given by

7

• When 𝜑 is zero (e.g. in magnets) the Hamiltonian simplifies to (δ = dp/p)

• The Hamiltonian for each magnet can be found by substituting the corresponding vector potential

* https://xsuite.readthedocs.io/en/latest/index.html



Multipole magnets
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• The ideal magnetic field for a straight multipole magnet with axial symmetry is



Dipole magnet (sector) – vector potential
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• Aim to have a constant vertical field only along the design orbit. Note that in 
general the curl in curvilinear coordinates is given by

• The following vector potential results in desired dipole field 



Dipole magnet – Hamiltonian 

• Substitute the vector potential for a sector dipole to obtain the exact Hamiltonian
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where the normaliszed dipole strength k0 is defined as

• Assuming small dynamics variables , series expand the square root term to first order (Xsuite manual Eqn. 
1.53). 

• This approximation makes the equation of motion more tractable. The higher order terms that are ignored are 
known as kinematic terms. 



Dipole magnet – Hamiltonian observations

• Next, look at the term 𝐡𝐤𝟎𝐱
𝟐/𝟐.  This is the potential energy term of a harmonic oscillator. Even in a uniform 

magnetic field, particles tend to oscillate around the design trajectory.  This is known as weak focusing and only 
appears in the horizontal plane. 

• Finally, the term -hxδ represents dispersion, i.e. particles with different momentum from the design will be 
deflected by different amounts by the magnet.
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• Applying the equations of motion, the (k0 – h)x term leads to a change in momentum.  

This is zero so long as k0 = h = 1/ρ, i.e. the px is unchanged if the magnet strength matches the design orbit!  



Dipole magnet – equations of motion (weak focusing)

• Apply Hamilton’s equations (assume k0 = h)
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• In the case δ=0, it follows 

where 𝜔 = ℎ𝑘0

Hill’s equation



Dipole magnet – transfer matrix

• It is convenient to express the map of a dipole magnet of length L in the form of a transfer matrix
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• M will multiply the phase space vector  𝑧 = 𝑥, 𝑝𝑥, 𝑦, 𝑝𝑦 , 𝜏, 𝑝𝜏



Quadrupole magnet (Hamiltonian)
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Starting with vector potential for a quadrupole

where

Use curl equations to find field equations

The vector potential leads to the following Hamiltonian (the norm. quadrupole strength 𝑘1 = 𝑒𝑔/𝑝).

Assuming a straight quadrupole, h=0, the expanded Hamiltonian can be written



Quadrupole magnet (transfer matrix)

• The “focusing” quadrupole transfer matrix (k1 > 0) is
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where 𝜔 = 𝑘1



Symplectic integration of a Harmonic Oscillator (1)

• The Hamiltonian for a harmonic oscillator in one dimension is
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where the potential energy is 𝑈 𝑞 = 𝑞2/2. The equations of motion follow

The exact evolution is given by



Symplectic integration of a Harmonic Oscillator (2)

• Note the symplectic condition is met (ΜΩΜ = Ω)
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• This condition must be satisfied to preserve phase space volume under evolution (Liouville). Next, expand 
cosine and sine terms to first order (cos τ ~ 1, sin τ ~  τ). 

• The symplectic condition is not satisfied in this case and furthermore 



Symplectic integration of a Harmonic Oscillator (3)

• The increase in energy will cause the trajectory to spiral outwards. A symplectic integration (one that 
preserves phase space volume) can be created as follows
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• The energy after one timestep  

• Although the symplectic condition is now met, the effective Hamiltonian becomes

• Since Hintegrated is conserved in this case, the difference between it and Htrue is a constant and the motion 
remains bounded. 



Symplectic integrator – splitting the Hamiltonian (1)

• In general, a symplectic integrator is constructed by splitting the Hamiltonian into R and K that depend on 
momentum and coordinates only, respectively. In 1D we can write
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• The Lie operator for R and for K become



Symplectic integrator – splitting the Hamiltonian (2)

• Applying the Lie transform, it is clear that the Hamiltonian K (the “kick”) updates the momentum only
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while the Hamiltonian R (the “drift”) updates the position alone



First order integrator – symplectic Euler

• To first order we can write 
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• This is the symplectic Euler method. Dividing the interval into steps of length h

• Note, the standard (“explicit”) Euler method is non-symplectic as in the lower equation the derivative of R is 
evaluated at pn rather than pn+1.  
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M. Leok - ”Introduction to geometrical numerical integration”, link to Youtube video

https://www.youtube.com/watch?v=O7gq9hPXztg&list=PL9RmZRs_Vh7oJyTzR8Ve-mbYMcIzu-kVS


Second order integrator – drift-kick-drift
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Figure: One step of a symplectic Euler integrator (left) and second order leapfrog (right). [S. Baturin]

If the Hamiltonian is split as follows

then to second order

This is known as the drift-kick-drift integrator (also known as leapfrog or Störmer-Verlet integrator)



Second order integrator – kick-drift-kick

• In simplified terms, the kick-drift-kick integrator is given by
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Fourth order integrator – Yoshida 
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Figure: One step of the fourth order Yoshida integrator. [S. Baturin]

Yoshida found that a set of integrators at order 2n can be found by building on the second order integrator S2

H. Yoshida, ”Construction of higher order symplectic integrators”, Physics Letters A, vol. 150, no. 5, pp. 262 – 268, 1990. 

where 𝛾 = 1/ 2 − 21/3 , 𝜅 = 1/ 21/3 2 − 21/3



Integrability 

• The ideal linear Hamiltonian
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has two invariants of motion, the transverse actions Jx, Jy. This ensure the system is integrable. 

• However, the addition of nonlinearities may compromise this integrability and lead to a reduction in the 
dynamic aperture. 

• Nonlinear magnets may be added intentionally, for example sextupole magnets to correct chromaticity, or 
arise from magnet imperfections or other sources



A non-integrable Hamiltonian – the Hénon-Heiles system

• The Hénon-Heiles potential may be written
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with Hamiltonian

• This is a time-independent Hamiltonian. It is integrable only for limited number of initial conditions. 
• The potential can be realised by adding a sextupole to a linear lattice in such a way that the Hamiltonian is time 

independent.*

*S.A. Antipov and S. Nagaitsev, “Hénon-Heiles Single particle Dynamics at IOTA”, Proc. IPAC2017 WEOAB1 



Hénon-Heiles phase space 

28

• The figure shows Poincare section in the Henon-Heiles cases for increasing values of E. 
• The motion tends to be integrable for low values of E but becomes increasingly chaotic as E 

approaches the escape value E = 1/6. 

*S.A. Antipov and S. Nagaitsev, “Hénon-Heiles Single particle Dynamics at IOTA”, Proc. IPAC2017 WEOAB1 



Hamiltonian with nonlinear multipoles

• Multipoles of any order in the Hamiltonian we may written as follows
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• The Hamiltonian may be split into a linear part H0 and nonlinear part V.

• The Vmn terms are coefficients for different orders of x and y. 

Credit: H. Bartosik, “Non-linear effects”, JUAS 2024



Resonance driving terms

30

• In action-angle coordinates

where ε indicates the nonlinear part is a small perturbation. The hjklm terms are known as resonance driving 
terms.

• Each multipole drives a set of resonance driving terms.
• Note terms with j=k, l=m has no angular dependence. This terms result instead result in tune shift with 

amplitude (e.g. the octupole drives detuning terms h2200, h1111, h0022)

J+k=mx l+m=my

Credit: H. Bartosik



Resonance driving term examples
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Credit: H. Bartosik

Sextupole driven resonance Octupole driven resonance


