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Curvilinear Coordinates

A Particle Trajectory

Ideal beam

path/+

(x,y,s), often called the standard co-ordinate system in accelerator physics

The origin is de
ned by the vector S(s) following the ideal reference path

e x=r—p s = pb
X=rsin=(p+x)sind, Y =y, Z=rcos = (p—+ x)cosb
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Transverse Equation of Motion - 1

® Start with the basics

d’r  mv?
Fy —_— —
a2 r
d(x+p) mv?
=m— s T o p = —eB,v (1)
® Factorise the equation
d’x  mv? x\ 7t

e Utilise the binomial approximation

md2x mv?2 1
dt? p
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Transverse Equation of Motion - 2

® Replace t with s and rearrange

® Consider small displacements in x

d’>x 1 X e 0B
2 _Z(1=-Z2)Y=—_——=—_1|B i 4
@ (173) e ()
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Transverse Equation of Motion - 3

® Set field gradient, g = 0By

2%

d?x 1 X e
ds?2  p < p) (Bo + &)

This is a modified Hill's equation

® Consider small momentum offsets Ap = p — pg < po

1 _1(1 Ap>1
po+Ap  po Po
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Transverse Equation of Motion - 4

¢ Insert Equation 8 into the modified Hill's equation (Eq. 7)

d?x 1 X e
ax_2(1-X)=_%¢
(1Y) =

2
P ) ot (a (10 2) s (14 22))
ds> p p Po Po Po

® Remember magnetic rigidity? Bp = p/e

N

d’x  x 1Ap
— =-——+k 10
a2 2 o (10)

where k = eg/p, and the last term is the product of two small terms (= 0)
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Transverse Equation of Motion - 5

® Finally a new modified Hill's equation

d’x 1 1Ap
— k e 11
ds? " <p2 )X P Po (1)

e Compare to the original Hill's equation from transverse lectures
d?x 1
dsz—|—<p2—k)x:0 (12)

® Particles with different momenta/energy have different orbits
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Dispersion

General solution will be of the form x(s) = xx(s) + xi(s)

® From previous lecture, dispersion is
defined as

D(s) = z,f/i) (13)

® |t is just another orbit and is subject to
the focusing properties of the lattice

® The orbit of any particle is the sum of
the well-known x;, and dispersion
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Matrix Formalism

® Recall transfer matricies from transverse lectures and add dispersion

<XX’>1 ) <CC 55) (xx’>0+Apf (3) (14)

where C = cos \/|k|s, § = — S|n\/|k5 C’—dc S§'= 92, and D’:Ap(/iz
® Solving Equation 11, one can show that
s s1q
D(s) = S(s) / —C(s)ds — C(s) / pS(s)ds (15)
J 50 p J 50
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Examples of Dispersion - 1

e Start with something simple, a drift!

Mo = (5 1) C6)=1,5() =1 (16)

® Importantly p = co so immediately Dy =0
® QOkay, so how about a pure sector dipole?

/ /

cos~-  psin-~
Mdipole = (_1 -pl f)

sint cos-+
p > p p

C(s) = cos/l), S(s) = psin[/) (17)
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Examples of Dispersion - 2

® Putting this in the equation for dispersion

I [ !
Dyipote(s) = sin — / cos > ds — cos — / sin >ds
P Jo P P Jo p

/ /
] [ _ 5} / [ s}
=sin— [psin—| + COS— [pCOS —
p Plo p Plo

/ / /
= psin® = + pcos — (cos — 1>
P P P

:p(l—cos/>
p

e And D/

dipole(s) = sin

p
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Examples of Dispersion - 3

® Assuming 6 = !/p is small we can expand this

/
Dd,-po/e(s) =p (1 — COS p)

(-
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Matrix Formalism Continued

Can now expand the transfer matrix to include dispersion

X c S D X
x! =|C s D x!
Ap/p, 1 0O 0 1 Ap /p, 0

Dispersion can be calculated by an
optics code for a real machine

D(s) is created by the dipoles...

...and focused by the quadrupoles

Diamond DBA Example =

S-function (m)
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Dispersed Beam Orbits

Eyﬂy

N 7%? (N
A?p \j _\j A_P\j%v :o

Ap
<0 — D(s
p ()P

These are 2D ellipses defining the beam

The central and extreme momenta are shown (there is a distribution in between)

® The vacuum chamber must accommodate the full spread
® With dispersion the dispersed closed orbit for a given particle is (assuming D, = 0)
Ap
y(s)=ys,(s),  x=xg.(s)+ D(s)— p (21)
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Dispersed Beam Size

® Dispersion also contributes to the beam size

® Therefore we can measure the dispersion by measuring beam sizes at different
locations with different amounts of dispersion and different s
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Dispersion Suppression

7> 7>

® Given a periodic lattice what can we do about dispersion?

® We can't get rid of it completely as it's produced by the dipoles
® Answer: suppress the dispersion elsewhere
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Dispersion Suppression: Easy Option

® Use extra quadrupoles to match D(s) and D'(s)

® Given an optical solution in the arc, suppressing dispersion can be achieved with 2
additional quadrupoles

® But that's not enough! Need to match the Twiss, optical parameters too

® An extra 4 quadrupoles are needed to match « and 8

Lin i S St S B e e N B S B N BN B A BN A e B B S e R + 1
Py AVALS- N 4. P 2S_ IOILDLID 13 A2

7
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Dispersion Suppression: Easy Option

Advantages:

Straight forward

Works for any phase advance per cell

® Ring geometry is unchanged

Flexible! Can match between different lattice structures
Disadvantages:
® Additional quadrupole magnets and power supplies required
® The extra quadrupoles are, in general, stronger

® The (8 function increases so the aperture increases
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Dispersion Suppression: Missing Bend

e Start with D = D’ = 0 and create dispersion such that the conditions are matched in

the first regular quadrupoles

e Utilise n cells without dipole magnets at the end of an arc, followed by m arc cells

® Hence “missing bend” dispersion suppression

Condition:

2m-+n
2

Oc=(k+1)7  (22)

where @ ¢ is the hase advance per cell, = o e

. m(bc_l _
sin ¢ =3, k =even

or sin m?c = —%, k = odd
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Dispersion Suppression: Missing Bend

Advantages:
® No additional quadrupoles or new power supplies
® Aperture requirements are the same as those in the arc as 3 is unchanged
Disadvantages:
® Only works for certain phase advances restricting optics options in the arc
® The geometry of the ring is changed
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Dispersion Suppression: Half Bend

® How about inserting different strength dipoles? Does it help?

® Assume you have a FODO arc cell, a lattice insertion and then a dispersion free
section without dipoles

e Condition for vanishing dispersion can be calculated for n cells with dipole strength

5sup

(0]
265up sin® <”2C> = Barc (23)

® So if we require dsyp = %dm we get

2
= n®c = km, k=odd (24)

sin? (M) =1 = sin(nd,)=0
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Dispersion Suppression: Half Bend

Advantages and disadvantages are the same as for the missing bend only there is an extra

disadvantage:

A special half strength dipole is required which may add extra cost to the design N.B.
This is not an exhaustive list of dispersion suppression techniques, just a taster!
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Chromaticity - 1

What about off-momentum effects through quadrupoles?

® The focusing strength of a quadrupole depends on the momentum of the particle
L oclfp
F 0 0 0 F sample trajectory
e AN S
[ ]

Particles with Ap > 0, Ap <0,

Off-momentum particles oscillate around a chromatic closed orbit NOT the design
orbit
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Chromaticity - 2

® Normalised quadrupole strength k = pi/e

® |n case of a momentum spread

eg eg Ap
k=—2 " ~=2(1-="C) =ko+ Ak 25
po + Ap Po( Po) ° (2%)
A
Ak = — =P (26)
Po

® This acts like a quadrupole error in the machine and leads to a tune spread

_1Aar 7{ ko(5)3(s)ds (27)

4 po

AQ = % ]fAk(s)ﬁ(s)ds
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Chromaticity - 3

® This spread in tune is expressed via chromaticity, @ or the normalised chromaticity, &
AQ AQ/qQ

@=20 Y (28)
p/Po AP/PO

® Note that chromaticity is produced by the lattice itself

It is determined by the focusing strength of all the quadrupoles

The “natural” chromaticity is negative and can lead to a large tune spread and
consequent instabilities

For example, for a FODO lattice £ =~ 1
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Correcting Chromaticity - 1

® Want to “sort” the particles by their momentum

e Utilise dispersive trajectory! Apply magnetic field that is zero at small amplitudes
and rises quickly outward

® Use sextupoles!

Be=&xy, By =3E(x-y) (29)

wn
N =

=
=

e

® This results in a linear gradient in x,
0B, _ 0B, 5 x

N dy — ox

® And a normalised sextupole strength

_ &X _ —
ksext - T/e = MgextX = mseXtDAp/Po

=
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Correcting Chromaticity - 2

Ap/p.>0
|

Ap/p =0 ! !
H i

i
quadrupole

sextupole
Ap/ps <0 PO

+——— focal length

This all results in a corrected chromaticity

- 74 [k(s) — mD(s)] f(s)ds (30)

Chromatic sextupoles: Sextupoles at nonzero dispersion can correct natural
chromaticity

Usually 2 families, one horizontal and one vertical

Place where ﬂx/yD is large to minimise their strength
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Summary

Reminder of co-ordinate system

Transverse equation of motion: modified Hill's equation with momentum spread

Dispersion revisited in matrix form

Effect of dispersion on beam orbit and beam size

Dispersion suppression

Chromaticity and chromatic tune spread

Chromatic sextupoles and chromaticity correction
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