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What is Longitudinal Beam Dynamics?

• Longitudinal Beam Dynamics (LBD) describes the motion of particles in
the“longitudinal plane” i.e. in the direction of travel.

• The real-space coordinate varies depending on the context (e.g. z , t, s, ϕ etc.)

• To visualise the LBD, we use the Longitudinal Phase Space (LPS)

• This comprises one real space coordinate (as above), and a coordinate related to
energy (e.g. E , p, δ etc.)

LBD concerns itself with particle energies → linked to acceleration process.
So what are the relevant interactions in LBD?
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Acceleration

In accelerator physics, only interaction of relevance is the electromagnetic interaction:

˙⃗p = γ̇mv⃗ + γm ˙⃗v = q
(
E⃗ + v⃗ × B⃗

)
.

In order to gain energy:

⇒ Require γ̇ ̸= 0

⇒ Component of ˙⃗p ∥ v⃗

⇒ 2nd-term on RHS always ⊥ v⃗

⇒ Only E⃗ can result in energy gain

⇒ ṗ = qEz
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Relativistic Kinematics

Units
• Will absorb factors of c into mass and momenta and express them in [E ] =eV.

• In this convention, [q] = e.

Relativistic energy-mass-momentum equivalence:

E 2 = m2 + p2 (1)

Take differential of Equation 1 to obtain key relation:

2EdE = 2pdp

→ dE =
p

E
dp

=
γβm

γm
dp

= βdp (2)
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Relativistic Kinetics

Rate of work done, W , by longitudinal electric field, Ez along particle trajectory:

dW

dz
= β

dp

dz
=

ṗ

c
= qEz

Total energy gain:

W = q

∫
Ezdz = qV

Radius of orbit in constant, homogenous magnetic field (B⃗):

ṗ = | ˙⃗p| = qβc2B =
pβc

ρ

→ Bρ =
p

qc
(3)

Bρ is known as the beam rigidity. N.B. ρ is the bending radius of the magnetic field
6 / 47



Methods of Acceleration

Simplest case: electrostatic field

• Limited by breakdown of static field

• Not space-efficient

• Fundamentally not applicable for circular accelerators:

W = q

∮
E⃗ · dl⃗ = 0 (4)
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Methods of Acceleration

An old-fashioned method: induction accelerator
While we cannot directly accelerate with B-field, we can use
them indirectly.
Faraday’s/Lenz’s law (& Stokes’ theorem):

∇⃗ × E⃗ = −∂B⃗

∂t∮
∂S

E⃗ · dl⃗ =
∫
S

˙⃗
B · dA⃗

First accelerator with constant closed orbit through
acceleration.

Image sourced from 1.

1url: https://en.wikipedia.org/wiki/Betatron
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Methods of Acceleration

The modern(ish) way: radio-frequency (RF) electric fields

• AC fields allow for larger gradients without breakdown of res. vacuum

• AC fields allow us to have multiple voltage gaps in a much smaller space.

• AC fields allow us to get around Eq. 4

• Typical orbital frequency of beam in accelerator is in RF-band
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Comment on Phases

RF phase (ϕ = ωRF t) is defined differently depending
upon context:

• For linear accelerators, RF voltage is considered
cosine-like, with origin at the positive crest of
waveform

• For circular accelerators, RF is considered
cosine-like, with origin at the positive gradient
zero-crossing of the waveform

Henceforth, we shall use the circular accelerator convention.
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Introduction to Synchrotrons

What is a synchrotron?

• Ring-like structure in which we accelerate particle (c.f.
some storage rings, accumulator rings), typically over a
large energy range

• Constant orbit throughout acceleration cycle

• Bunched beam

• Normally strong focusing

Synchrotrons use RF electric fields to accelerate like the DTL described earlier. Unlike the
DTL, RF systems in a synchrotron typically comprise a small number of gaps in a smaller
resonant cavity.
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Introduction to Synchrotrons

How do we do this?

• The RF frequency is swept to keep synchronicity as the
beam accelerates:

fRF = hfr =
hβc

2πR0
(5)

• The main magnetic field is increased in-kind to maintain
the constant orbit

⇒ ρ = p
qBc = const. (Reminder: [p] = eV; [q] = e)

Notation:

R0 = ⟨R(ϕ)⟩, mean radius at center of beam pipe
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Energy Ramp

When designing synchrotron, what will the energy ramp look like?
Typically determined by:

• Use case of accelerator

• Type of magnets used (normal- vs super-conducting)

• Required rep-rate

From beam rigidity (Eq. 3) and Equation 2:

ṗ = qcḂρ

∆pturn = fr ṗ

∆Eturn = β∆pturn

= 2πR0qḂρ (6)
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Synchronous Particle
In order to accelerate consistently turn-to-turn, the RF frequency must be an integer
multiple (harmonic number, h) of the nominal revolution frequency.
Energy gain of a particle accelerated by a sinusoidal AC field:

∆E = qV sinϕ

Define the synchronous phase,

ϕs = arcsin

(
2πR0Ḃρ

V

)
. (7)

A particle crossing the RF gap at ϕs sees the same phase on it’s return, provided it’s
energy is the nominal energy. We refer to this particle as the synchronous particle. The
synchronous particle gains energy every turn according to Equation 6.
The synchronous particle lies at a stable fixed-point (SFP) of the LPS. More on this
later!
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RF Synchronisation

• As the synchronous particle gains energy, its revolution frequency increases.

• RF frequency has to follow:

fRF = hfr =
hβ(t)c

2πR0
=

hc

2πR0

p(t)

E (t)
=

qhc2ρ

2πR0

B(t)

E (t)

• Using Equation 1:

fRF =
hc

2πR0

√√√√ B(t)2

B(t)2 +
(

m
qcρ

)2 (8)

⇒ Intrinsic synchronisation between magnetic and electric fields!

• Note asymptotic limit of Equation 8: as B increases (i.e. as β → 1) fRF → hc
2πR0

⇒ RF frequency sweep is more important at lower energies
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Frequency Sweep Examples: LHC Accelerator Chain

The RF requirements of the LHC complex vary massively between the individual
accelerators.

Synchrotron Initial/Final Energy Min/Max fr
∆fr
fr,min

PSB 0.16/2.0 GeV 0.99/1.81 MHz 82.3%
PS 2/26 GeV 451/476 kHz 5.5%
SPS 26/450 GeV 43.422/43.488 kHz 0.1%
LHC 450/7000 GeV 11.10340/11.10342 kHz 2.2× 10−4%

Revolution frequency shifts through the CERN Acclerator Chain
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Phase Stability

We have shown that a particle at (ϕs ,Es) sees the same RF phase throughout
acceleration.
But a beam is made of many particles, distributed over a range of phases and energies.
How do we maintain a stable, bunched beam?
Let’s start with a simple example: phase stability in a proton drift-tube linac.
We will assume:

• The linac is a standing-wave structure operating in 2π-mode: the phase of E⃗ (t) is
the same in all gaps at any given time

• The voltage is the same across each gap

• The distance across each gap is negligible
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Phase Stability in a Linac

There are two phases (fixed points) in a given RF period at which a particle can remain
perfectly synchronous with the RF field. To figure out which is ϕs , we must consider
small offset about ϕs .
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Phase Stability in a Linac

ϕs lies at the stable fixed point. Later particles gain more energy, arriving earlier at the
next gap (& vice versa). The point π − ϕs is the unstable fixed point.
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Consequences of Phase Stability in a Linac

• Phase stability is mediated by velocity
differences in particles

• At high γ, the longitudinal position of
particles is essentially frozen

• For electron machines, this happens at
relatively low (∼10 MeV) energies

• For protons, much higher energies are
required (∼10 GeV)

• For lead ions, need ∼10 TeV
(∼50 GeV u−1)
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Phase Stability in a Synchrotron

To understand phase stability in a synchrotron, we
must dip a toe into transverse dynamics.
Consider a particle with a small relative momentum
offset δp = p−p0

p0
from the nominal momentum of the

magnetic field, p0:

• Particle enters dipole in the ring with transverse
coordinate x = x ′ = 0

• Particle takes a wider orbit than the synchronous
particle due to dispersion (Eq. 3)
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Dispersion

• Bending radius increased by

∆x = Dxδp,

where Dx = Dx(s) is the dispersion function

• Path length difference through the magnet:

∆l = ∆s −∆s0 = (ρ+∆x)∆θ − ρ∆θ = Dx∆θδp

lim
∆→0

∆l

∆s0
=

dl

ds0
=

Dx(s0)

ρ(s0)
δp (9)
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Momentum Compaction

Integrate Equation (9) to get the total path length difference over full orbit:

∆C =

∮
dl = δp

∮
Dx(s0)

ρ(s0)
ds0

Momentum compaction factor:

αc =
dL/L
dp/p

=
1

δp

∆C

C0
=

1

C0

∮
Dx(s0)

ρ(s0)
ds0 ≈

1

C0

N∑
i

⟨Dx⟩iθi ,

where ⟨Dx⟩i and θi are the average dispersion and bend angle in the i th dipole.
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Transition Energy
So we now have two factors affecting the revolution frequency of off-momentum particles
in a synchrotron:
• A decrease in revolution time due to an increase in velocity
• An increase in revolution time due to an increase in the orbit length with increasing

momentum

Combining these:
dfr
fr

=
C0

βs

(
dβ − dC

C 2
0

)
=

dβ

βs
− αcδp (10)

Recognizing that β is itself also a function of p, and using Equation 2:

dβ

βs
=

dp

ps
− dγ

γs

=
dp

ps
− dE

Es

=
(
1− β2

)
δp (11)
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Transition Energy

Combining Equations 10 and 11 together:

dfr
fr

=

(
1

γ2
− αc

)
δp = ηδp, (12)

where η is the phase slip factor.
N.B some references define η with a minus sign.
Inspection of 12 shows a clear transition regime. We define the transition energy with
γt = 1/√αc .

• Below transition, the phase slippage is velocity dominated

• Above transition, phase slippage is dispersion dominated

• Navigating transition is a challenge for high-energy synchrotrons
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Phase Stability in a Synchrotron

dfr
fr

= ηδp =

(
1

γ2
− 1

γ2t

)
δp
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Consequences of Phase Stability in a Synchrotron

• Phase stability is determined by both velocity and orbit length differences, which are
in opposition to one another

• During acceleration, synchrotron may pass through transition, where stable region
of LPS changes rapidly

• Potentially problematic for overall accelrator performance

• Generally more relevant for hadron and ion machines than electron machines
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Variables in Synchrotron LBD

LBD, also known as synchrotron motion in the context of circular machines, describes
the motion of particles in the longitudinal plane through the coupled variables of energy
and a longitudinal spatial coordinate. For circular machines, the RF phase is a convenient
choice for this coordinate.
We will first begin by introducing some reduced variables, centered on the energy and
phase of the synchronous particle:

• ∆E = E − Es , particle energy

• ∆p = p − ps , particle momentum

• ∆θ = θ − θs , particle azimuthal angle

• ∆ϕ = ϕ− ϕs , particle RF phase

• ∆fr = fr − fr ,s , particle RF phase
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First Energy-Phase Relation
RF phase is related to azimuthal position around the
ring by:

∆θ = −1

h
∆ϕRF

The change in revolution frequency is then related to
the rate-of-change of ϕ by:

∆ω =
d∆θ

dt
= −1

h
ϕ̇rf

Combining with the phase slip factor (Eq. 12):

First Energy-Phase Relation

ϕ̇ = hωrηδp =
hω2

r η

β2E

(
∆E

ωr

)
(13)
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Second Energy-Phase Relation

From Equation 6, we can get the rate-of-change of energy:

Ė = frqV sinϕ

From this, we can quickly reach the second energy-phase relation:

Second Energy-Phase Relation

d

dt

(
∆E

ωr

)
=

qV

2π
(sinϕ− sinϕs) (14)
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Longitudinal Equation of Motion

Combining Equations 13 and 14, we can obtain an equation of motion:

d

dt

(
β2E

hω2
r η

ϕ̇

)
+

qV

2π
(sinϕ− sinϕs) = 0 (15)

A non-linear 2nd-order differential equation.
N.B. the parameters β, E , ωr , and η are all relatively slowly varying.
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Longitudinal Hamiltonian

We can also derive the enrgy-phase relations from a Hamiltonian. Use the canonical
variables (ϕ,W ), where W = ∆E

ωr
:

Longitudinal Hamiltonian

H =
hω2

r ,sη

2β2Es
W 2 +

q

2π
U(ϕ) (16)

U(ϕ) =

∫ ϕ

ϕs

(
V (ϕ′)− V (ϕs)

)
dϕ′ (17)

Equations 13 and 14 can then be obtained from Equation 16 by

Ẇ = −∂H(ϕ,W )

∂ϕ
ϕ̇ =

∂H(ϕ,W )

∂W
(18)
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Longitudinal Hamiltonian Dynamics Example
Simple example: single-harmonic RF

V (ϕ) = V1 sinϕ

In this example, the potential (Eq. 17) is given by:

U(ϕ) = V1 (cosϕs − cosϕ− (ϕ− ϕs) sinϕs)
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Longitudinal Hamiltonian Dynamics Example

• We have created a potential
well in the longitudinal
plane

• Shape of the well changes with
the synchronous phase
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Longitudinal Hamiltonian Dynamics Example

Single Harmonic RF Hamiltonian

H(ϕ,W ) =
hω2

r ,sη

2β2Es
W 2 +

qV1

2π
(cosϕs − cosϕ− (ϕ− ϕs) sinϕs)

• Particles travel along contours of
constant H under conservative forces

• The synchronous particle, is located at
the stble fixed point (SFP), (ϕs , 0)

• The stable region is bounded by the
separatrix

• The separatrix passes through the
unstable fixed point (UFP) at W = 0

• Let’s first look at particles close to ϕs
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Small Amplitude Oscillations
We can re-write Equation 15 as

ϕ̈+
Ω2
s

cosϕs
(sinϕ− sinϕs) = 0, (19)

with the synchrotron frequency

Ω2
s =

hηω2
r qV cosϕs

2πβ2Es
,

where the slowly-varying parameters η, ωr , β, and Es have been assumed to be constant.
If we take a small deviation in phase away from ϕs , such that:

sinϕ− sinϕs = sin (ϕs +∆ϕ)− sinϕs ≈ ∆ϕ cosϕs ,

we can reduce Equation 19 to simple harmonic motion:

ϕ̈+Ω2
s∆ϕ = 0.
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Small Amplitude Oscillations

Particles close to ϕs exhibit simple harmonic motion in the LPS, with characteristic
frequency Ωs .
The synchrotron tune, Qs = Ωs/ωr , is typically small:

• Qs ∼ 10−3 for proton machines

• Qs ∼ 10−1 for electron machines

Implicit in the previous analysis is the stability condition we recognised by inspection
previously:

• Ω2
s > 0 → η cosϕs > 0

• γ < γt → η > 0 → 0 < ϕs < π/2

• γ > γt → η < 0 → π/2 < ϕs < π
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Large Amplitude Oscillations

• For large ∆ϕ, Equation 15 is non-linear

• Particles follow hyperbolic trajectories
close to UFP.

• Can use H to calculate separatrix
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Separatrix

• First, using Equation 17, identify the UFP, (ϕ⋆, 0), as

dU

dϕ

∣∣∣
ϕ⋆

= 0 ϕ⋆ = π − ϕs

• Calculate Hamiltonian of separatrix from Equation 16:

Hsep =
qV1

2π
(2 cosϕs − (π − 2ϕs) sinϕs)

• Put back into Equation 16 to obtain the separatrix equation

Separatrix Equation

∆Esep =

√
qV1β2Es

πhη
(cosϕs + cosϕ+ (ϕ− π + ϕs) sinϕs)
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Synchrotron Oscillations

Particles within the stable region of the LPS
oscillate around ϕs . These are called
synchrotron oscillations.

• Amplitude of oscillation depends upon
initial coordinate of a particle

• Higher amplitude oscillations are
typically lower frequency

• Synchrotron frequency is typically much
lower than betatron frequency

⇒ Force imparted by RF ≪ quadrupole
magnetic field
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Synchrotron Motion

The motion in the LPS is called synchrtron
motion.

• Particles follow contours of constant H
• Particles orbit the SFP in an
anti-clockwise fashion

• Energy is exchanged between
phase-dependent potential and kinetic
energy analogue ∝ W 2
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RF Bucket

• The region bounded by the
separatrix is also known as the
RF bucket

• The area of LPS occupied by
the bunch is the longitudinal
emittance, εϕ

• The longitudinal emittance is
often much smaller than the
bucket area

• εϕ = 4πσϕσ∆E

• N.B. Other references may use
different definitions of the
emittance
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Energy Acceptance

The height of the bucket is also known as the energy acceptance:

Energy Acceptance(
∆E

Es

)
max

=

√
qVβ2

ϕηEs
(2 cosϕs + (2ϕs − π) sinϕs)

• Depends strongly upon ϕs

• Bucket height decreases during acceleration due to changes in ϕs

• As V ↑, ∆Emax ↑
• Higher harmonics result in a smaller energy acceptance
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Accelerating Bucket

• Bucket area dramatically reduced with increasing
ϕs

⇒ Need considerably more gap volts than the
minimum to practically accelerate a bunch
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Summary

• Methods of acceleration

• Synchrotrons

• Momentum compaction and dispersion (more on this later!)

• Phase stability

• Equations of Motion

• Hamiltonian formalism

• RF Buckets and Emittance

• What next? To be seen in tutorials!
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