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plasma as an accelerator

~1m; ~40 MV/m

a plasma wave

a section of RF cavity

Conventional Accelerators are large (100 metres) and expensive
10-100M$

Conventional accelerators cannot achieve better than a few 10 MV/m
or you get breakdown

Plasma waves are a possible alternative - providing a route to
university scale accelerators and radiation sources



plasma as an accelerator

~1m; ~40 MV/m

~ 50 um; ~ 100 GV/m

a plasma wave

a section of RF cavity

Conventional Accelerators are large (100 metres) and expensive
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why do we want to use a laser-plasma accelerator?

» Conventional particle
accelerators are large and
expensive machines

» Plasma based
accelerators are a
possible compact
alternative

» In particular we are now
quite good at accelerating
electrons to ~ 1 GeV with
~ 100 TW lasers
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why do we want to use a laser-plasma accelerator?

Diamond light source
3 GeV electron beam ~ £300 M

Astra Gemini Laser
1 GeV electron beam ~ £3 M

Conventional particle
accelerators are large and
expensive machines

Plasma based
accelerators are a
possible compact
alternative

INn particular we are now
quite good at accelerating
electrons to ~ 1 GeV with
~ 100 TW lasers



Wakefield acceleration

boat

4

when a boat travels through water it
produces a wave behind it - a ‘wake’

the phase velocity of the wave is just the
speed of the boat

SO wWe can use a laser pulse travelling at
close to ¢ in a plasma to drive a strong
wave behind it.

The wave In this case Is an electron
plasma oscillation
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Because these are high frequency
osclllations the ions do not move and we
can have very strong electric fields




Driving Force

» For laser wakefield accelerators wake driven by ponderomotive force
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Ponderomotive Force

This simple derivation was for low intensity (ap < 1) also called non-
relativistic intensities (I < 1018 Wem-2).

How do we extend to high intensities”

method 1) just replace me ¢2 with yme ¢2- but do it at the right stage
2
e 1 1
F, = V(E?) = ——mec®—V{a*)
T 2(ymews 27 ()

method 2) do it properly solving the equation of motion relativistically
(see Quesnel + Mora Phys Rev E 1998)

1 1
F, = ——m.c—V(a?
D 2m0<w> (a”)




Driving relativistic plasma waves

The drive pulse of an intense laser pulse pushes away electrons just like
a boat pushes away the water

The much heavier ions are left behind - this charge separation makes a
very large electric field

As the electrons rush back to their original position they overshoot
forming a plasma wave

Plasma wave amplitude is largest if the drive duration is less than the
plasma wavelength et < Ap
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Driving Plasma waves

» The picture of wakefield | have shown so far is from a particle-in-cell
numerical simulation

» But is it possible to “see” the plasma wave directly in experiments?



Driving Plasma waves

» The picture of wakefield | have shown so far is from a particle-in-cell

numerical simulation

» But isit possible to “see” the plasma wave directly in experiments?

Radial distance (um)

» Yes! This is using a technique called Fourier domain holography (Matlis Nature
Physics 2006)
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Driving Plasma waves

rel. intensity

4

4

modulation

The picture of wakefield | have shown so far is from a particle-in-cell
simulation

But is it possible to “see” the plasma wave directly in experiments?
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Phase velocity and wavelength of plasma waves

The laser pulse speed determines the wavelength and phase
velocity.

Think of each electron as a separate oscillator, that is set in motion
by the laser when the laser gets to it.

If the first electron (at z = 0) is set in motion at ¢ = 0, the next electron
(at z = 4z) will start oscillating at ¢t = At = Az/vs where is the velocity of
the laser pulse in the plasma (group velocity)

there will be a wave with a phase velocity of v, = A4z/At = vg

The wavelength will therefore be 270, 9

Y T,
p p




Ap (ULM)

Phase velocity and wavelength of plasma waves

Buck Nature Physics 2011

» The wavelength of plasma
waves Is also experimentally
verifiable

n, (10" cm ) Ap =~ 10 pm  at ne = 109 cm3
(for A = 800 nm laser )



Dephasing

» electrons travel slightly faster than the wave - eventually they stop
being accelerated, this is called "dephasing”
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move ahead of the wave which is moving at
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Limits to Acceleration: 1) Dephasing

» Relativistic electrons (ve/c = . — 1) accelerating in the wave will
move ahead of the wave which is moving at

The time it takes the electron to move half a plasma wave out of
phase (i.e. from accelerating to decelerating field) is:

Ap Ap The N
~ Ly, = \,—
2c (66 — 5}9) C Tle dp pne

Dephasing length < 8 mm at ne = 4 x 1018 cm-3

ty =

Dephasing is the fundamental limit to energy gain in LWFA



Limits to Acceleration: 2) pump depletion

» Creating the plasma wave takes energy - this
must come from the drive pulse.

1 M CW
Uplasma = ZeoEﬁo plasma wave electric field energy density E.o=9 66 p

Wilasma = Uplasma AL energy in plasma wave cross section A, length L

M CLQ

Ulaser = §€OE%O laser electric and magnetic field energy density ~ E'ro = ag -

Wiaser = Ulaser AcTr, €Nergy in laser pulse wave cross section A, duration 7 ¢7 = ¢ )\p

ao 2 Uz
Lpd — 2¢ (F) n—e)\p

we can tailor parameters so pump depletion > dephasing



Limits to acceleration: 3) diffraction

We need to keep the laser intense over the entire interaction

Distance over which a laser diffracts in vacuum is the Rayleigh
Range Tw?

KR — —
A0

For zr = 1 cm we need focal spots ~ 50 um - difficult to make very
intense focal spot this large

) (e.g. youneed P > 90 TW forap = 1)



Limits to acceleration: 3) diffraction

4

4

4

4

To overcome diffraction we need to guide the laser - an optical
fibre

Can't use a normal optical fibre - it will damage!
plasma waveguide - plasma density minimum on axis
Pre-formed plasma waveguides (Hooker group)

Self-guiding - pulse forms its own waveguide



The blow-out regime

laser driver
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» If the drive beam is strong enough then it can completely expel all the
electrons from near the laser pulse - we call this the blow-out or bubble
regime



The blow-out regime

l
beam driver
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» If the drive beam is strong enough then it can completely expel all the
electrons from near the laser pulse - we call this the blow-out or bubble
regime



The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble
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The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble

1 2
Fp — —§m602va—
8

v /1+ a2 ~a
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The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and

space charge force of the ionic bubble
1 a? e(ne —n;)  eng
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The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble

Fy = —tm2v e v.p - —Clre—m) _ eno
2 Y €0 €0
veV1I+a?xa E(r) ~ engr/eg
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The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble

Fy = —tm2v e v.p - —Clre—m) _ eno
2 Y €0 €0
veV1I+a?xa E(r) ~ engr/eg

2
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The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble

1 2 _ e — Il
F, = ——m>V— A D (U
2 Y €0 €0
7%\/14_@2%@ E(T)%Gno’f‘/éo
9




The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble

1 a? —e(ne — Ny en
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The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble

by = —lmBCQVCL—Z V-E= —elne —ni) _ eno
2 Y €0 €0
vreV1i+alxa E(r) ~ engr/eg
2
F, ~ mec?ag /wo Fio = —e“ngr/eg

2 ao 62n07“b

MeC” — — =0
Wo €0
it turns out that the situation is ;
A 0 best if the laser spot size is ry & 24/ag—
k2wq matched to the bubble so we Wy
P have:




The bubble regime: the field strength

» Using the equation for the electric field

» And the blow-out radius
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The bubble regime: the field strength

» Using the equation for the electric field E(r) =engr/eg
» And the blow-out radius ry & 2@&
Wp

» we can estimate the field strength of the bubble - it is:

Ema:c ~ vV a0

MeCWy,
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The bubble regime: the field strength

Using the equation for the electric field E(r) =engr/eg
And the blow-out radius ry & Qﬁi
Wp

we can estimate the field strength of the bubble - it is:

Ema:c ~ vV a0

MeCWy,

€

For ap =3 and a plasma density of no = 4 x 10'® cm-3 we get a
maximum field of 330 GV/m |

Combining this with the dephasing length we would get a maximum
electron energy of 2.4 GeV

- this is an overestimate as non-linear effects make the group velocity a bit
slower



Injecting electrons into the wave

For a surfer to “catch a wave” he must swim to get up to speed
before the wave arrives

If he is too slow the wave will just pass over him

we must find a way of accelerating electrons up to the correct
speed for them to be trapped by the wave and accelerated



Injecting electrons into the wave

too slow

For a surfer to “catch a wave” he must swim to get up to speed
before the wave arrives

If he is too slow the wave will just pass over him

we must find a way of accelerating electrons up to the correct
speed for them to be trapped by the wave and accelerated



self-injection

» Nature is kind to us - when the wakefield has a large enough
amplitude some electrons can be trapped

» They are all injected at the back of the bubble so can be
accelerated to the same energy - quasi-monoenergetic electron
beams



self-injection

» Nature is kind to us - when the wakefield has a large enough
amplitude some electrons can be trapped

» They are all injected at the back of the bubble so can be
accelerated to the same energy - quasi-monoenergetic electron
beams



self-injection

/\
P, /\

>
E (z - ct)

p this a plot of the longitudinal position ( & = z-ct ) in the wave against the
longitudinal momentum p: (called the p.—¢ phase space)

® Ihe black arrows show electron trajectories

@ Irapped electrons follow closed orbits

p seli-injection in the bubble only happens over a small range of ¢ at the
back of the bubble

p phase space rotation exchanges initial spread in p: for spread in &



self-injection

> >

¢ electron spectrum

p This animation demonstrates how phase space rotation changes the
electron spectrum



self-injection
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¢ electron spectrum

p This animation demonstrates how phase space rotation changes the
electron spectrum



what sort of electron beams can we get?

» Back in 2004 the Imperial College group, a group in the
US (LBNL) and a group in France (LOA) were the first to
report narrow energy spread beams from a laser
wakefield accelerator
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What sort of electron beams can we get?

beam energy /GeV

2005 2010 2015 2020
year

e [ here has been steady progress in LWFAs
» e.g. beam energy doubles every 2.5 years (roughly!)

*to add data to this database please go to: https://forms.gle/D3zR2uHpjos9RQXt6




What sort of electron beams can we get?
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laser power/TW

e [ncrease In Beam energy has has been achieved by using higher
power lasers.

e why do we need higher power lasers to get higher energy

electrons?
*to add data to this database please go to: https://forms.gle/D3zR2uHpjos9RQXt6




What sort of electron beams can we get?

:ID

ANLEIC (111dU)
1

pC/mrad/(GeV/c)

0o 2 4
1
! I &
1
o 2 4 6 8
momentum /GeV momentum /GeV
Gonsalves, PRL, 122, 084801 (2019)

e Current record is 8 GeV in 20 cm with a 0.85 PW laser




Beam energy is not the only important parameter!




Laser wakefield accelerators can produce ultra short duration

electron beams

e L \WFA bunches
measured to be less
than 2 fs
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Lundh et al Nat. Phys. 7, 219-222 (2011)




Laser wakefield accelerators can operate consistently

Run time (hours)
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Maier et al PRX 10, 031039 (2020)

e Dedicated LWFA facility running at 10 Hz for more than 24 hours

— Stable, consistent operation



Laser wakefield accelerators can produce narrow energy spread
beams

b 2
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e New Injection methods can produce very narrow energy spread
beams at the per mille level




Laser wakefield accelerators can be controlled and optimised

X-Ray Counts (norm.)
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e Machine learning methods can

laser wakefield accelerators
»6D optimization of LWFA using Bayesian Optimization

Shalloo et al, Nat Comms, 11, 6355 (2020)

e used to optimize and control




When a high power laser enters a plasma, something amazing
happens...
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When a high power laser enters a plasma, something amazing
happens...

e | aser enters plasma, driving a
plasma wave In 1ts wake

e \Wake amplitude grows and electrons from
background plasma are swept up and
accelerated by the wake

e Electrons undergo
betatron oscillations in the
wake, generating X-rays




Laser wakefield accelerators are a source of interesting
X-ray beams

bright X-ray flash
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i |
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e LW WFA produce X-rays “betatron radiation”
— high-energy (10s keV);

— broadband (synchrotron spectrum)

peak spectral brilliance

— ultra-fast (femtosecond duration); 1018 e
10" 10 10 10

— bright (> 109 photons per shot) photon energy [keV]



Co-location with other laser pulses makes laser wakefield
accelerators tools for diverse experiments



Laser Wakefield Accelerators for Dynamic Imaging

Silicon shock targets Adhesive

50 um

Ablator
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y position / um

Drive

/'
2

(a) Daformation of the (b)
ablator layer

J Wood et al Sci Rep 8, 11010 (2018) J Wood PhD Thesis, Imperial 2017

e Small (1 pm) source size enables use to make high resolution
imaging of laser driven shocks



Co-location with other laser pulses makes laser wakefield
accelerator tools for diverse experiments
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Mahieu et al, Nat Comms 9, 3276 (2018)

e X-rays generated by laser wakefield beams as ultrafast probe of
dense matter
— Non-equilibrium dynamics of matter in extreme conditions



Co-location with other laser pulses makes laser wakefield

accelerator tools for diverse experiments
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Cole et al, PRX 8, 011020 (2018)

e Collisions between high intensity lasers
and electrons can probe electrodynamics
In extreme fields

— experimental evidence for “radiation reaction”

— Signatures of quantum nature of this in strong
flelds
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Summary

» This lecture has covered:

e ntroduction to laser wakefield acceleration

o driving plasma waves with lasers
J Limits to acceleration with LWFA

o Trends and status of L

» Any questions?

stuart.mangles@imperial.ac.uk
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