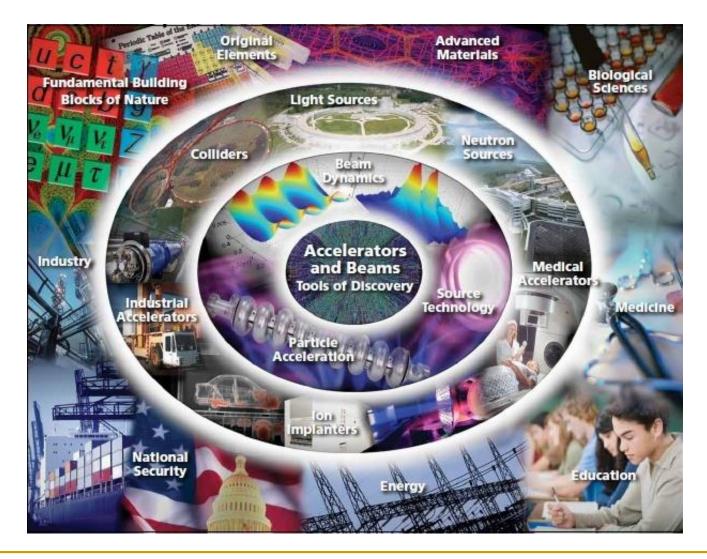
Lecture 1 Introduction to Particle Accelerators

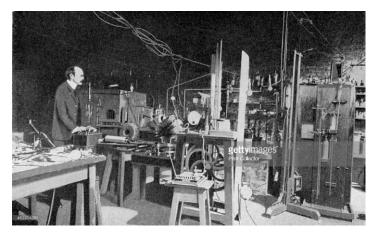
Professor Emmanuel Tsesmelis Principal Physicist, CERN Visiting Professor, University of Oxford

Graduate Accelerator Physics Course John Adams Institute for Accelerator Science 16 October 2024



JAI Graduate Accelerator Physics Course

- Delivered over two Academic Terms
 - **Term I** (Michaelmas Term 2024)
 - 24 lectures and 6 tutorials
 - First three lectures and first tutorial includes Oxford PP students.
 - Term II (Hilary Term 2025)
 - Lectures, tutorials and design project
- Course site is <u>https://indico.cern.ch/category/5869/</u>
 - Includes all lecture / tutorial material, videoconference connection, student handbook etc.
- Videoconference facility for remote connection


Contact e-mail: Emmanuel.Tsesmelis@cern.ch

Introduction

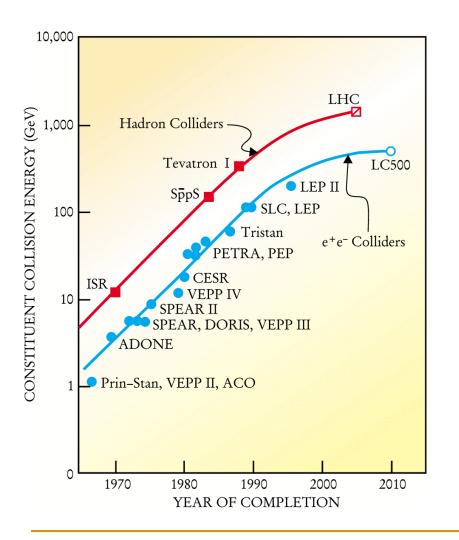
Accelerator Development

- Characterised by rapid progress for over a century.
 - From cathode-ray tubes to the LHC.
 - From the discovery of the electron to the discovery of the Higgs boson.
- Advances in accelerators require corresponding advances in accelerator technologies
 - Magnets, vacuum systems, RF systems, diagnostics,...
- But timelines becoming long, requiring:
 - Long-term planning.
 - Long-term resources.
 - Global collaboration.

24 (+1) Nobel Prizes in Physics that had direct contribution from accelerators

Year	Name	Accelerator-Science Contribution to Nobel Prize- Winning Research			
1939	Ernest O. Lawrence	Lawrence invented the cyclotron at the University of			
1939	Effest O. Lawfence	Californian at Berkeley in 1929 [12].			
1951	John D. Cockcroft and	Cockcroft and Walton invented their eponymous linear			
Ernest T.S. Walton		positive-ion accelerator at the Cavendish Laboratory in			
	Ernest 1.5. waiton				
1052		Cambridge, England, in 1932 [13].			
1952	Felix Bloch	Bloch used a cyclotron at the Crocker Radiation			
		Laboratory at the University of California at Berkeley			
		in his discovery of the magnetic moment of the neutron			
10.55		in 1940 [14].			
1957	Tsung-Dao Lee and Chen Ning	Lee and Yang analyzed data on K mesons (θ and τ)			
	Yang	from Bevatron experiments at the Lawrence Radiation			
		Laboratory in 1955 [15], which supported their idea in			
		1956 that parity is not conserved in weak interactions			
		[16].			
1959	Emilio G. Segrè and	Segrè and Chamberlain discovered the antiproton in			
	Owen Chamberlain	1955 using the Bevatron at the Lawrence Radiation			
		Laboratory [17].			
1960	Donald A. Glaser	Glaser tested his first experimental six-inch bubble			
		chamber in 1955 with high-energy protons produced by			
		the Brookhaven Cosmotron [18].			
1961	Robert Hofstadter	Hofstadter carried out electron-scattering experiments			
		on carbon-12 and oxygen-16 in 1959 using the SLAC			
		linac and thereby made discoveries on the structure of			
		nucleons [19].			
1963	Maria Goeppert Mayer	Goeppert Mayer analyzed experiments using neutron			
		beams produced by the University of Chicago			
		cyclotron in 1947 to measure the nuclear binding			
		energies of krypton and xenon [20], which led to her			
		discoveries on high magic numbers in 1948 [21].			
1967	Hans A. Bethe	Bethe analyzed nuclear reactions involving accelerated			
		protons and other nuclei whereby he discovered in			
		1939 how energy is produced in stars [22].			
1968	Luis W. Alvarez	Alvarez discovered a large number of resonance states			
		using his fifteen-inch hydrogen bubble chamber and			
		high-energy proton beams from the Bevatron at the			
		Lawrence Radiation Laboratory [23].			
1976	Burton Richter and	Richter discovered the J/ Ψ particle in 1974 using the			
	Samuel C.C. Ting	SPEAR collider at Stanford [24], and Ting discovered			
		the J/ Ψ particle independently in 1974 using the			
		Brookhaven Alternating Gradient Synchrotron [25].			
1979	Sheldon L. Glashow.	Glashow, Salam, and Weinberg cited experiments on			
	Abdus Salam, and	the bombardment of nuclei with neutrinos at CERN in			
	Steven Weinberg	1973 [26] as confirmation of their prediction of weak			

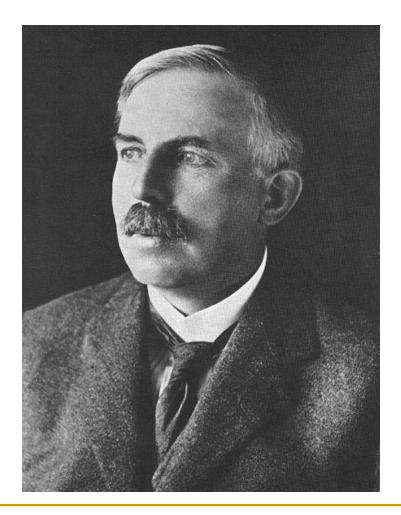
1980	James W. Cronin and	Cronin and Fitch concluded in 1964 that CP (charge-
	Val L. Fitch	parity) symmetry is violated in the decay of neutral K
		mesons based upon their experiments using the
		Brookhaven Alternating Gradient Synchrotron [28].
1981	Kai M. Siegbahn	Siegbahn invented a weak-focusing principle for
	U	betatrons in 1944 with which he made significant
		improvements in high-resolution electron spectroscopy
		[29].
1983	William A. Fowler	Fowler collaborated on and analyzed accelerator-based
		experiments in 1958 [30], which he used to support his
		hypothesis on stellar-fusion processes in 1957 [31].
1984	Carlo Rubbia and	Rubbia led a team of physicists who observed the
	Simon van der Meer	intermediate vector bosons W and Z in 1983 using
		CERN's proton-antiproton collider [32], and van der
		Meer developed much of the instrumentation needed
		for these experiments [33].
1986	Ernst Ruska	Ruska built the first electron microscope in 1933 based
		upon a magnetic optical system that provided large
		magnification [34].
1988	Leon M. Lederman,	Lederman, Schwartz, and Steinberger discovered the
	Melvin Schwartz, and	muon neutrino in 1962 using Brookhaven's Alternating
	Jack Steinberger	Gradient Synchrotron [35].
1989	Wolfgang Paul	Paul's idea in the early 1950s of building ion traps
		grew out of accelerator physics [36].
1990	Jerome I. Friedman,	Friedman, Kendall, and Taylor's experiments in 1974
	Henry W. Kendall, and	on deep inelastic scattering of electrons on protons and
	Richard E. Taylor	bound neutrons used the SLAC linac [37].
1992	Georges Charpak	Charpak's development of multiwire proportional
		chambers in 1970 were made possible by accelerator-
		based testing at CERN [38].
1995	Martin L. Perl	Perl discovered the tau lepton in 1975 using Stanford's
2004	Desid L Creek Fred W"1 1	SPEAR collider [39].
2004	David J. Gross, Frank Wilczek,	Gross, Wilczek, and Politzer discovered asymptotic
	and H. David Politzer	freedom in the theory of strong interactions in 1973
	H. David Politzer	based upon results from the SLAC linac on electron-
2008	Malasta Kalassali and	proton scattering [40].
2008	Makoto Kobayashi and Toshihide Maskawa	Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB
	i osminue maskawa	accelerator at KEK (High Energy Accelerator Research
		Organization) in Tsukuba, Ibaraki Prefecture, Japan,
		and the PEP II (Positron Electron Project II) at SLAC
		[41], which showed that quark mixing in the six-quark
		model is the dominant source of broken symmetry [42]
		model is the dominant source of broken symmetry [42]


A.Chao and E. Haussecker "*Impact of Accelerator Science on Physics Research*", published in ICFA Newsletter, Dec 2010; & submitted to the Physics in Perspective Journal, Dec 2010.

Nobel Prize in Physics 2013

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

Livingston Plot

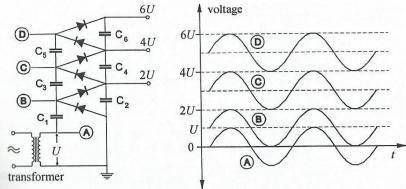


- Around 1950, Livingston made following observation:
 - Plotting energy of accelerator as a function of year of commissioning, on semi-log scale, the energy gain had linear dependence.
- Observations today:
 - Exhibition of saturation effect:
 - New technologies needed.
 - Overall project cost increased
 - Project cost increased by factor of 200 over last 40 years.
 - Cost per proton-proton E_{CM} energy decreased by factor of 10 over last 40 years.

Rutherford fired the starting pistol

At the Royal Society in 1928 he said:

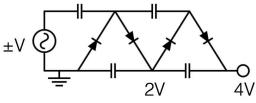
"I have long hoped for a source of positive particles more energetic than those emitted from natural radioactive substances".



Electrostatic Accelerators The Cockcroft-Walton

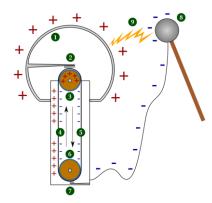
- Based on system of multiple rectifiers.
- Voltage generated by cascade circuit

 $U_{
m tot} = 2Un - rac{2\pi I}{\omega C} \left(rac{2}{3}n^3 + rac{1}{4}n^2 + rac{1}{12}n
ight)$


- Modern CWs
 - Voltages up to ~4 MV.
 - Beam currents of several hundred mA with pulsed particle beams of few µs pulse length.

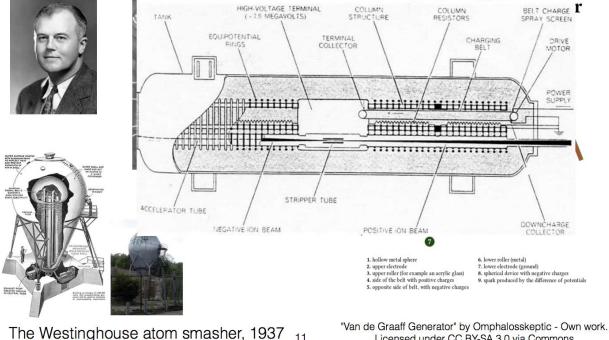
10

Walton and the machine used to "split the atom" Cavendish Lab, Cambridge


Voltage multiplier circuit https://www.youtube.com/watch?v=ep3D_LC2UzU

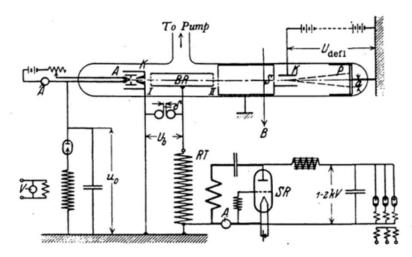
Electrostatic Accelerators – The Van de Graaff

With any electrostatic accelerator, it is difficult to achieve energy higher than ~20 MeV (e.g. due to practical limitations of the size of the vessels).


Van de Graaff Generator

1. hollow metal sphere 2. upper electrode 3. upper roller (for example an acrylic glass) side of the belt with positive charges
 opposite side of belt, with negative charges

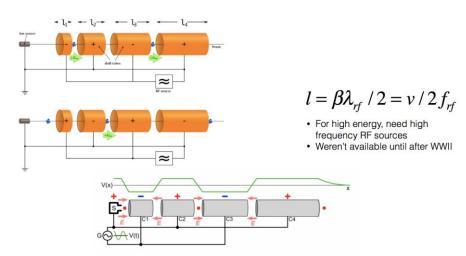
6. lower roller (metal) lower electrode (ground) 8. spherical device with negative charges 9. spark produced by the difference of potentials


Robert Van de Graaff 1929

Licensed under CC BY-SA 3.0 via Commons

Linear Accelerators

- Rolf Widerøe, 1924
- His PhD thesis was to realise a single drift tube with 2 gaps.
 25kV, 1MHz AC voltage produced a 50keV kinetic energy beam.
- First resonant accelerator (patented)

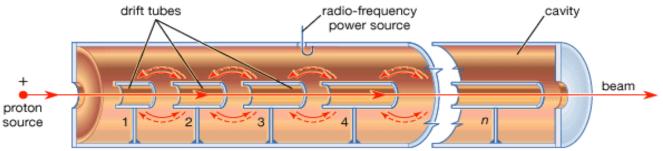


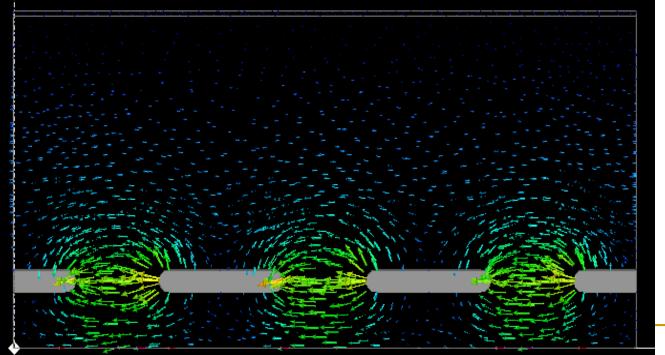
The linear accelerator & it's AC powering circuit

Historical note: He was influenced by Gustav Ising's work, which was never realised in practise as he didn't use an AC source. Ising, Gustav. Arkiv Fuer Matematik, Astronomi Och Fysik **18** (4), 1928

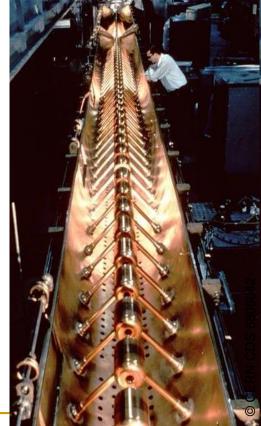
Linear Accelerators

But Wideroe's idea was not quite an RF cavity, Alvarez introduced that...

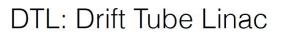

Phase focusing in linacs


Principle

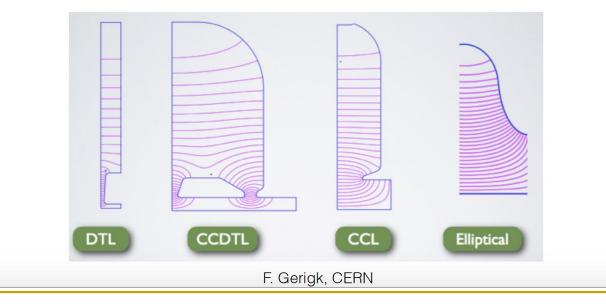
- Use rapidly-changing high frequency voltages instead of direct voltages (Ising)
- Energy is proportional to number of stages *i* traversed by particle.
- The largest voltage in entire system is never greater than V_{max}
 - Arbitrary high energies without voltage discharge.

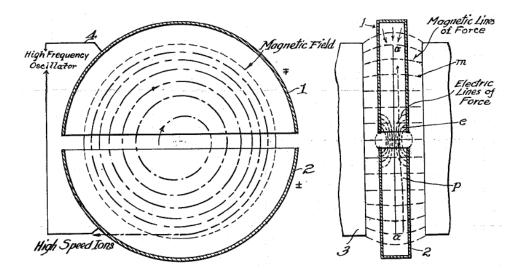

Drift Tube Linac: Higher Integrated Field

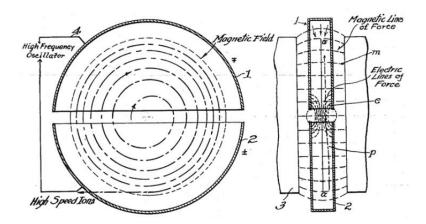
© 2007 Encyclopædia Britannica, Inc.


CERN LINAC1

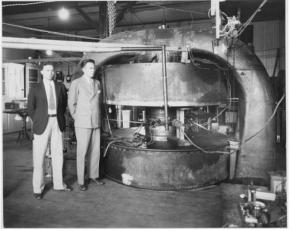
Linac Structures


Images thanks to Ciprian Plostinar, RAL




The Cyclotron (1/3)

- In 1929-1930 Lawrence designed a "cyclotron", a circular device made of two electrodes placed in a magnetic field.
- Cyclotrons can accelerate (e.g.) protons up to hundreds of MeV.


 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & &$

The Cyclotron (2/3)

The Cyclotron, from E. Lawrence's 1934 patent

The first cyclotron

We will discuss cyclotron focusing in Transverse Dynamics I

E. Lawrence & M. Stanley Livingston

Cyclotron (3/3)

$$\frac{mv_{\theta}^{2}}{\rho} = qv_{\theta}B_{z}$$
Revolution frequency $\omega_{0} = v_{\theta} / \rho$
Lawrence: "R cancels R!"
Cancelling out rho gives:

Ernest Lawrence

$$\omega_0 = qB_z / m$$
$$\rho = mv / qB_z$$

Centrifugal force = magnetic force

ie. for constant charge q and mass m, and a uniform magnetic field B, the angular frequency is constant. ie. the rf frequency can be constant. The orbit radius is proportional to speed, v.

The Betatron

- Like a transformer with the beam as a secondary coil
- Usually used for relativistic electrons (so different from a cyclotron).
- Max energy achieved 300 MeV
- Accelerating field produced by a changing magnetic field that also serves to maintains electrons in a circular orbit of fixed radius as they are accelerated

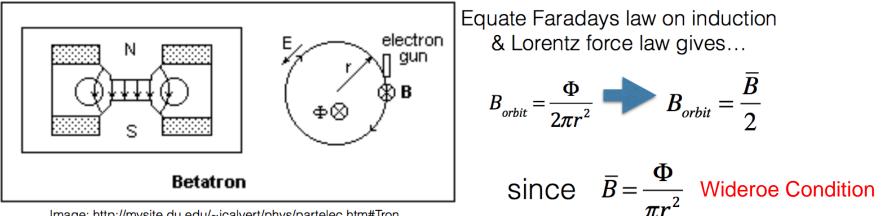
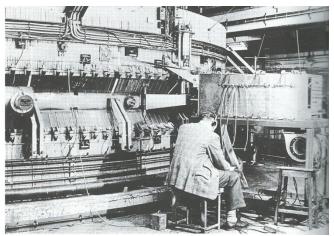


Image: http://mysite.du.edu/~jcalvert/phys/partelec.htm#Tron


http://physics.princeton.edu/~mcdonald/examples/betatron.pdf

Centripetal force provided by Lorentz force

The Synchrotron - Origins


"Particles should be constrained to move in a circle of constant radius thus enabling the use of an annular ring of magnetic field...which would be varied in such a way that the radius of curvature remains constant as the particle gains energy through successive accelerations by an alternating electric field applied between coaxial hollow electrodes."

Mark Oliphant, Oak Ridge, 1943

With Ernest Rutherford in 1932

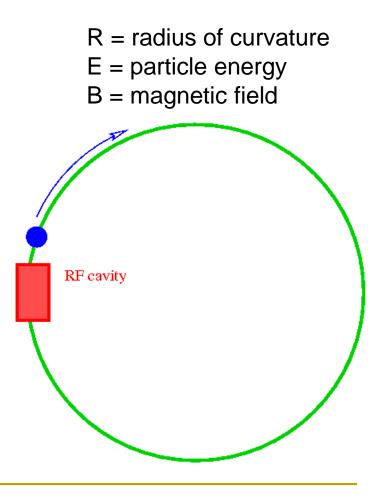
1 GeV machine at Birmingham University

Image courtesy of ISIS, STFC

22

rf cavity

dipole magnets


quadrupole magnets

Synchrotrons - Principles

From

R = E / (ecB)E/B kept constant since R is fixed. B increases synchronously with rising E

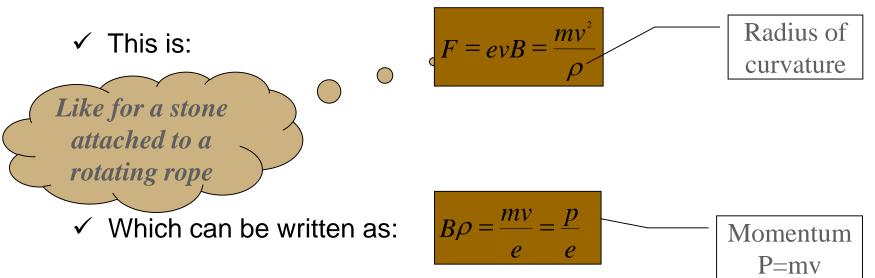
- Synchrotrons, such as LHC, can accelerate to much higher energies.
- Limitation of synchrotrons (especially for electrons) is due to "synchrotron radiation".

Beam Optics

- Physical fundamentals for beam steering & focusing.
- Fix particle trajectory and then repeatedly steer diverging particles back onto ideal trajectory.
- Performed by EM fields (*E* and *B*) satisfying Lorentz
 Force

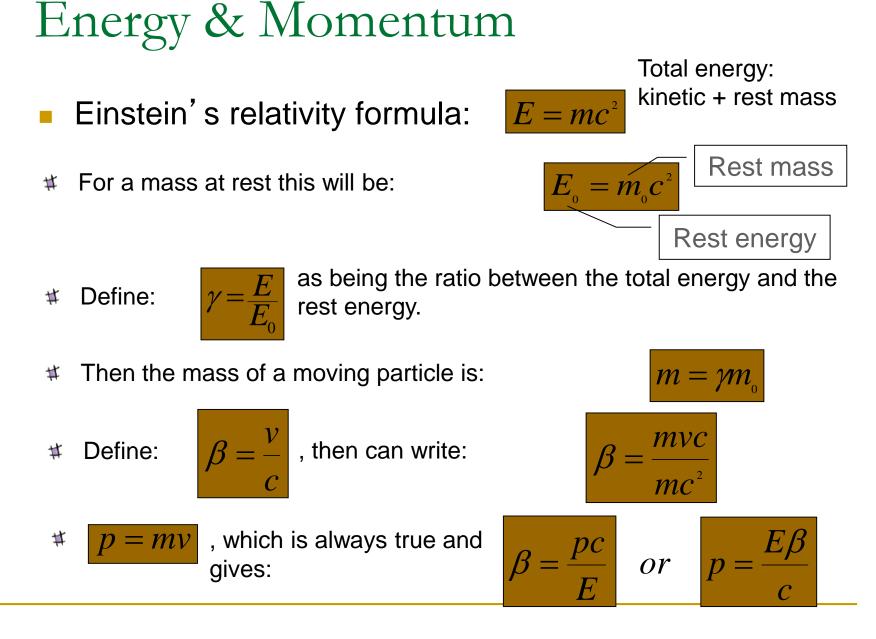
$$F = e(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) = \dot{\boldsymbol{p}}$$

Lorentz force = centrifugal force


$$F_x = -ev_s B_z$$

$$F_r = m v_s^2 / R$$

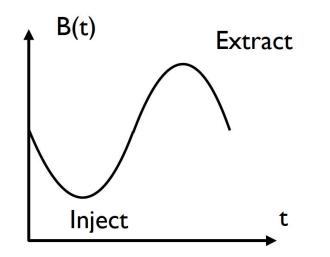
$$\frac{1}{R(x,z,s)} = \frac{e}{p} B_z(x,z,s)$$


Magnetic Rigidity

The force <u>evB</u> on a charged particle moving with velocity <u>v</u> in a dipole field of strength <u>B</u> is equal to its mass multiplied by its acceleration towards the centre of its circular path.

 \checkmark **Bp** is called the **magnetic rigidity**, and in the correct units obtain:

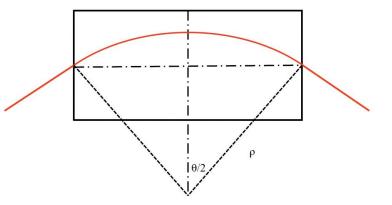
Bρ = 33.356·p [KG·m] = 3.3356·p [T·m] (if p is in [GeV/c])


Multipoles in Beam Steering

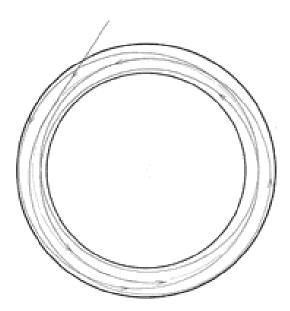
- Magnetic field around beam is sum of multipoles.
 - Each has different effect on particle path.
- Linear beam optics refers to use of only dipoles and quadrupoles for beam steering.

$\frac{e}{p}B_z(x)$	=	$\frac{e}{p}B_{z0}$	+	$\frac{e}{p}\frac{dB_z}{dx}x$	+	$\frac{1}{2!} \frac{e}{p} \frac{d^2 B_z}{dx^2} x^2$	+	$\frac{1}{3!}\frac{e}{p}\frac{d^3B_z}{dx^3}x^3$	+
	=	$\frac{1}{R}$	+	kx	+	$\frac{1}{2!}mx^2$	+	$\frac{1}{3!}ox^3$	+
		dipole		quadrupole		sextupole		octupole	

multipole	definition	effect
dipole	$\frac{1}{R} = \frac{e}{p}B_{z0}$	beam steering
quadrupole	$k = \frac{e}{p} \frac{dB_z}{dx}$	beam focusing
sextupole	$m = \frac{e}{p} \frac{d^2 B_z}{dx^2}$	chromaticity compensation
octupole	$o = \frac{e}{p} \frac{d^3 B_z}{dx^3}$	field errors or field compensation
etc.		


Synchrotrons- Bending Magnets

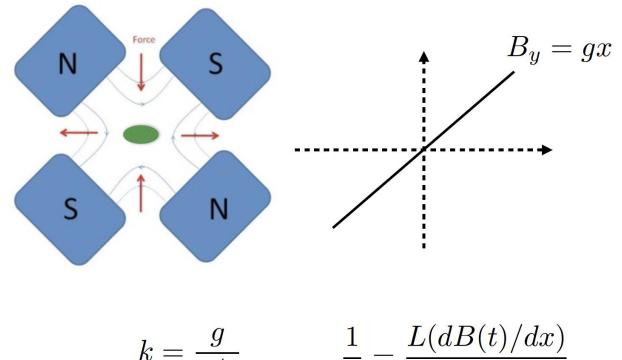
Bending angle in dipole magnet


$$\sin(\theta/2) = \frac{B(t)L}{2(B(t)\rho)} \qquad \theta \approx \frac{B(t)L}{p(t)/q}$$

Typical synchrotron magnet cycle

Synchrotrons - Focusing

- Focusing is needed to confine the orbits.
- First accelerators had "weak focusing" focusing period is larger than the perimeter.
 - Vertical focusing comes from the curvature of the field lines when the field falls off with radius.
 - Horizontal focusing from the curvature of the path.
 - Negative field gradient defocuses horizontally & must not be so strong as to cancel path curvature effect

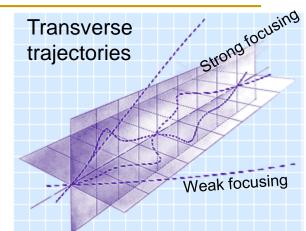


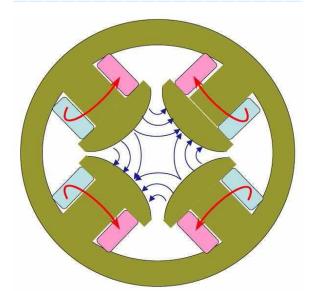
Weak focusing accelerator

10 GeV weak-focusing Synchrophasotron built in Dubna in 1957, the biggest and the most powerful of its time. Its magnets weigh 36,000 tons and it was registered in the Guinness Book of Records as the heaviest in the world.

Synchrotron – Focusing Magnets

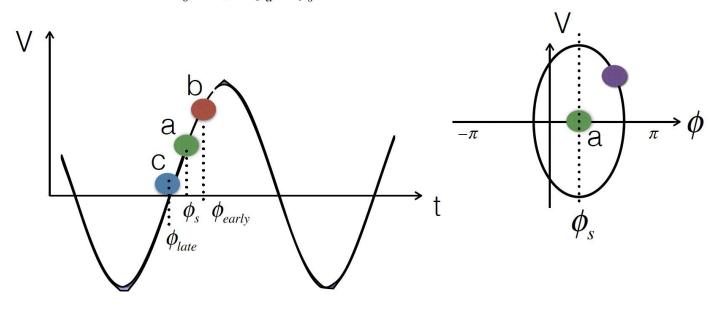
$$-\frac{1}{p/q}$$
 $\overline{f} = \frac{1}{p(t)/q}$


'normalised gradient' of quad

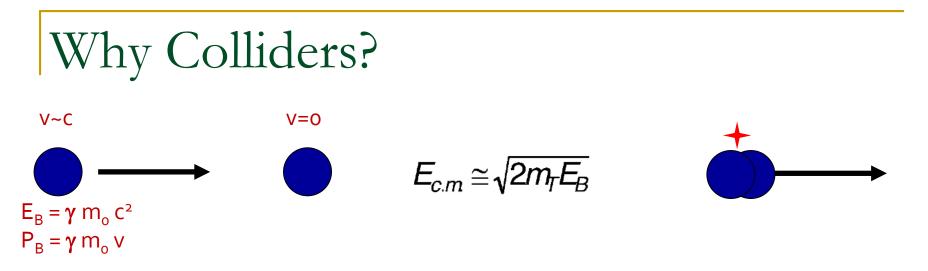

 "Strong focusing" alternates focusing-defocusing forces (provided by quadrupoles) to give overall focusing in both X & Y planes.

Strong focusing allows use of more compact magnets, thus achieving many times larger energy with the same cost.

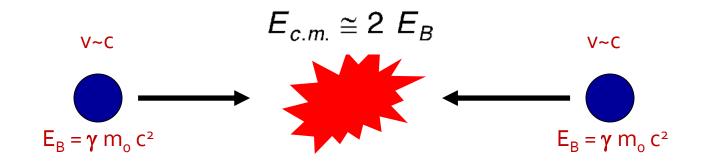
200-m diameter ring, weight of magnets 3,800 tons

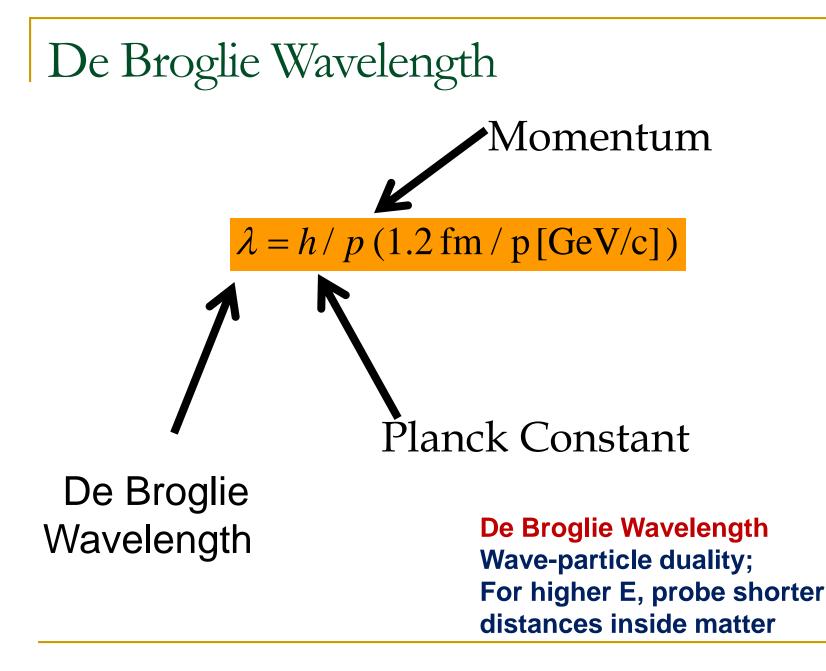


CERN's Proton Synchrotron, was the first operating strong-focusing accelerator.


Synchtroton – Phase Stability

a - synchronous


- b arrives early, sees higher voltage, goes to larger orbit -> arrives later next time
- c arrives late, sees lower voltage, goes to smaller orbit -> arrives earlier next time



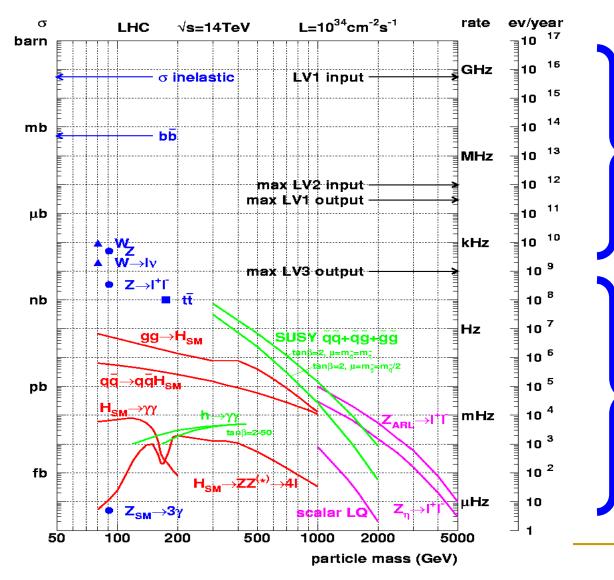
 $V = V_0 \sin(2\pi f_a + \phi_s)$

Only a tiny fraction of energy converted into mass of new particles (due to energy and <u>momentum</u> conservation)

Luminosity

Particle colliders designed to deliver two basic parameters to HEP user.

- Measure of collision rate per unit area.
- Event rate for given event probability ("cross-section"):


For a Collider, instantaneous luminosity L is given by

$$R = \mathcal{L}\sigma$$

■ → Require intense beams, high bunch frequency and small beam sizes at IP.

$$\frac{N_{+}N_{-}f_{c}}{4\pi\sigma_{x}^{*}\sigma_{y}^{*}}$$

Cross-sections at the LHC

"Well known" processes. Don't need to keep all of them ...

New Physics!! We want to keep!!

Collider Types

Hadron Colliders

- Desire high energy
 - Only ~10% of beam energy available for hard collisions producing new particles
 - □ Need O(10 TeV) Collider to probe 1 TeV mass scale.
 - High-energy beam requires strong magnets to store and focus beam in reasonable-sized ring.
- Desire high luminosity
 - Use proton-proton collisions.
 - □ High bunch population and high bunch frequency.
 - Anti-protons difficult to produce if beam is lost
 - □ *c.f.* SPS Collider and Tevatron

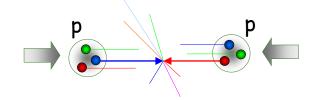
Collider Types

Lepton Colliders (e+e-)

- Synchrotron radiation is the most serious challenge
 - Energy loss of a particle per turn

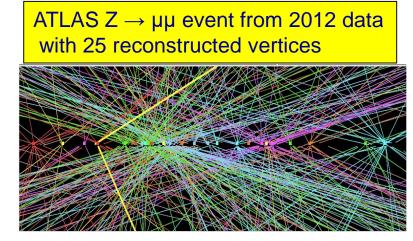
$$u = \frac{4\pi}{3} \frac{r}{(m_0 c^2)^3} E^4 \int \frac{1}{\rho^2} d\rho = -\frac{CE^4}{\rho}$$

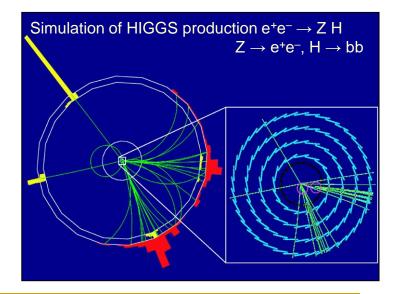
Emitted power in circular machine is

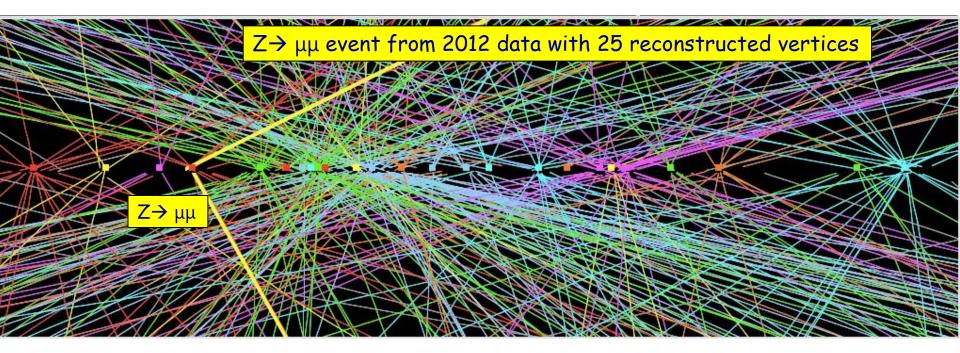

$$P_{SR}[kW] = \frac{88.5 E^4 [GeV] I[A]}{\rho[m]}$$

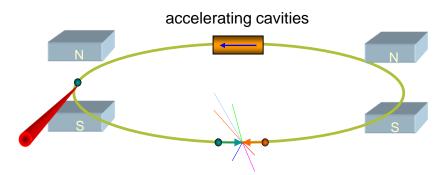
- For collider with E_{CM} = 1 TeV in the LHC tunnel with a 1 mA beam, radiated power would be 2 GW
 - Would need to replenish radiated power with RF
 - Remove it from vacuum chamber
- Approach for high energies is Linear Collider.

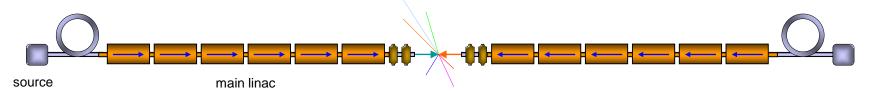
Collider Characteristics


Hadron collider at the frontier of physics


- Huge QCD background
- Not all nucleon energy available in collision


Lepton collider for precision physics
 Well defined initial energy for reaction
 Colliding point like particles




The Higgs is hiding in thousands of trillions interactions...

Circular versus Linear Collider

Circular Collider many magnets, few cavities, stored beam higher energy \rightarrow stronger magnetic field \rightarrow higher synchrotron radiation losses (E⁴/m⁴R)

Linear Collider

few magnets, many cavities, single pass beam higher energy → higher accelerating gradient higher luminosity → higher beam power (high bunch repetition)

A New Era in Fundamental Science

-ICh

CERN Prévessin

leyrin

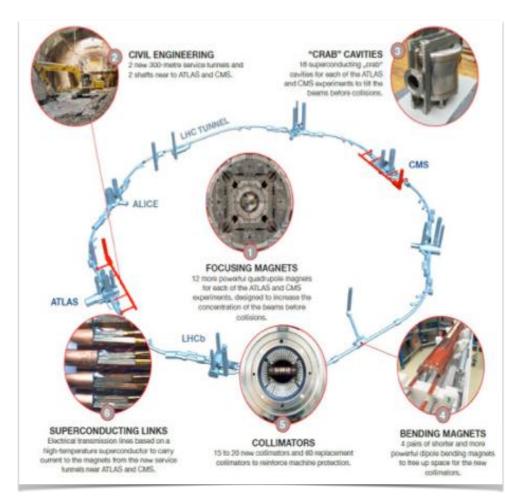
ALICE

ALIC

Exploration of a new energy frontier in p-p and Pb-Pb collisions

CMS

LHC ring: 27 km circumference


Upgrade to the High-Luminosity LHC is under way

The HL-LHC will use new technologies to provide 10 times more collisions than the LHC.

It will give access to rare phenomena, greater precision and discovery potential.

It will start operating in 2030, and run until approx. 2041.

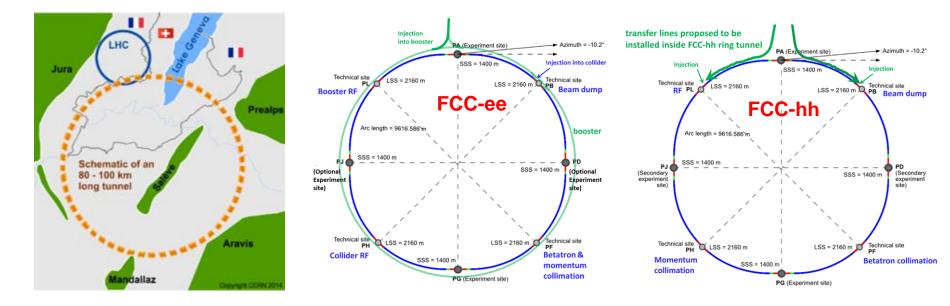
High-Luminosity LHC (HL-LHC)

- New quadrupole magnets near the interaction points
- New 11 Tesla short dipole magnets
- Collimation upgrade
- Crab Cavities
- Accelerator safety upgrade
- Major interventions on 1.2 km of the LHC

Preparing CERN's Future

Driven by the **2020 Update of the European Strategy for Particle Physics**

- Technical and financial feasibility study of a Future Circular Collider (report in 2025)
- Accelerator R&D to develop technologies for FCC and for alternative options
- Detector and computing R&D
- Maintain and expand a compelling scientific diversity programme
- Continue to support other projects around the world


FCC Integrated Programme

Comprehensive long-term programme maximising physics opportunities

FUTURE

CIRCULAR

- Stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option
- · Highly synergetic and complementary programme boosting the physics reach of both colliders
- Common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- · FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

FUTURE
CIRCULAR
COLLIDER

FCC

FCC-ee Main Machine Parameters

Parameter	z	ww	н (zн)	ttbar	
beam energy [GeV]	45.6	80	120	182.5	
beam current [mA]	1270	137	26.7	4.9	
number bunches/beam	11200	1780	440	60	
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55	
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4	
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4	
long. damping time [turns]	1158	215	64	18	
horizontal beta* [m]	0.11	0.2	0.24	1.0	
vertical beta* [mm]	0.7	1.0	1.0	1.6	
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59	
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6	
vertical rms IP spot size [nm]	36	47	40	51	
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134	
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / 5.4	3.4 / 4.7	1.8 / 2.2	
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	≥5.0	1.25	
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15	
beam lifetime rad Bhabha + BS [min]	15	12	12	11	
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs	

Design and parameters to maximise luminosity at all working points:

- Allow for 50 MW synchrotron radiation per beam.
- Independent vacuum systems for electrons and positrons
- Full energy booster ring with top-up injection, collider permanently in collision mode

□ x 10-50 improvements on all EW observables

□ up to x 10 improvement on Higgs coupling (model-indep.) measurements over HL-LHC

- □ x10 Belle II statistics for b, c, т
- □ indirect discovery potential up to ~ 70 TeV

direct discovery potential for feebly-interacting particles over 5-100 GeV mass range

Up to 4 interaction points \rightarrow robustness, statistics, possibility of specialised detectors to maximise physics output

F. Gianotti

FCC-hh Main Machine Parameters

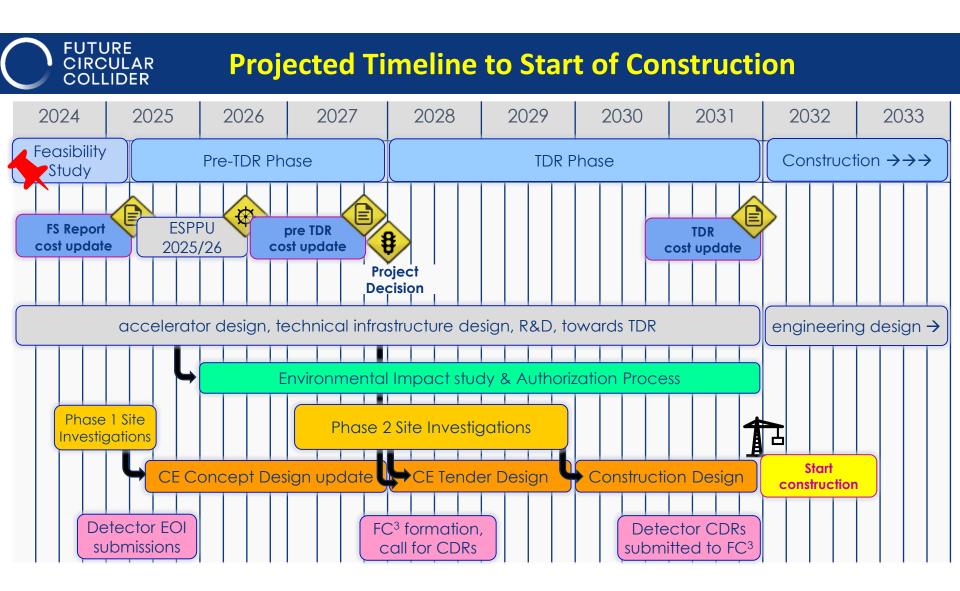
parameter	FCC-hh	HL-LHC	LHC		
collision energy cms [TeV]	81 - 115	14			
dipole field [T]	14 - 20	8.	8.33		
circumference [km]	90.7	26	26.7		
arc length [km]	76.9	22.5			
beam current [A]	0.5	1.1	0.58		
bunch intensity [10 ¹¹]	1	2.2	1.15		
bunch spacing [ns]	25	25			
synchr. rad. power / ring [kW]	1020 - 4250	7.3	3.6		
SR power / length [W/m/ap.]	13 - 54	0.33	0.17		
long. emit. damping time [h]	0.77 – 0.26	12.9			
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	~30	5 (lev.)	1		
events/bunch crossing	~1000	132	27		
stored energy/beam [GJ]	6.1 - 8.9	0.7	0.36		
Integrated luminosity/main IP [fb ⁻ ¹]	20000	3000	300		

With FCC-hh after FCC-ee: significant amount of time for high-field magnet R&D, aiming at highest possible collision energies

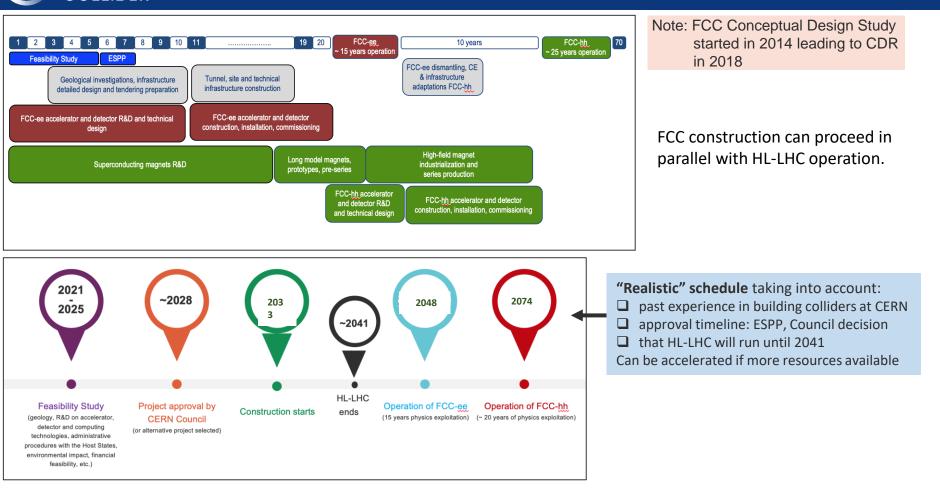
 Target field range for cryomagnet R&D

Formidable challenges:

FUTURE

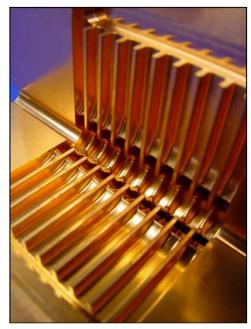

CIRCULAR COLLIDER

- □ high-field superconducting magnets: 14 20 T
- \Box power load in arcs from synchrotron radiation: 4 MW \rightarrow cryogenics, vacuum
- \Box stored beam energy: ~ 9 GJ \rightarrow machine protection
- □ pile-up in the detectors: ~1000 events/xing
- \Box optimization of energy consumption: \rightarrow R&D on cryo, HTS, beam current, ...

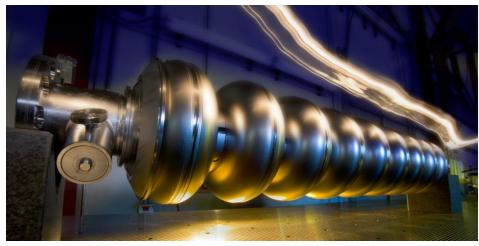

Formidable physics reach, including:

- Direct discovery potential up to ~ 40 TeV
- $\hfill\square$ Measurement of Higgs self to ~ 5% and ttH to ~ 1%
- □ High-precision and model-indep (with FCC-ee input) measurements of rare Higgs decays ($\gamma\gamma$, $Z\gamma$, $\mu\mu$)

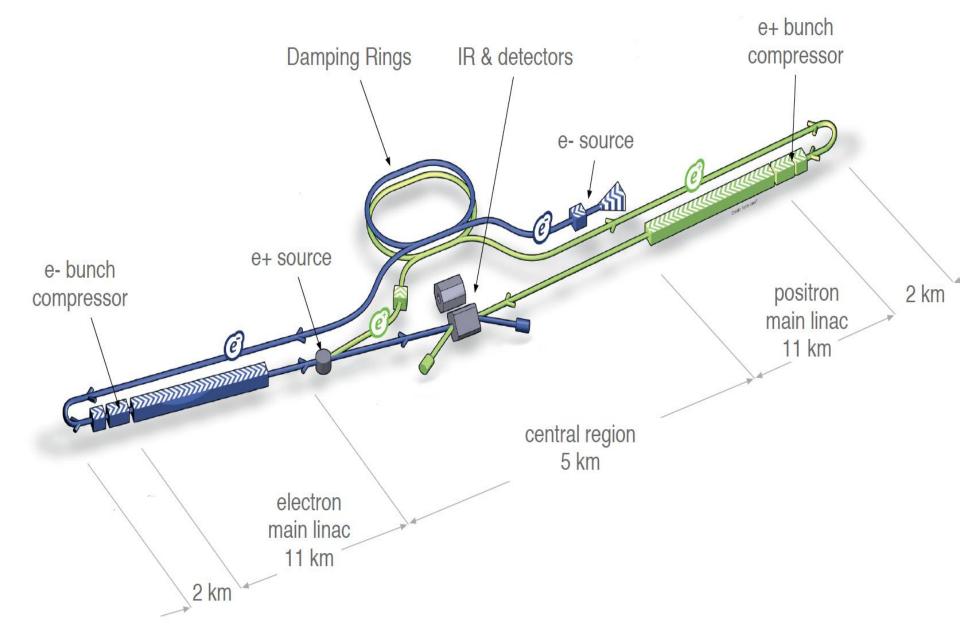
□ Final word about WIMP dark matter


FCC Integrated Programme - Timeline

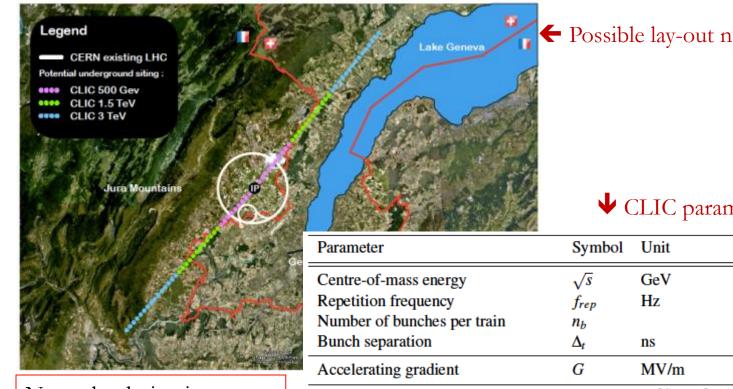
FUTURE CIRCULAR COLLIDER


Linear Colliders

CLIC


•2-beam acceleration scheme at room temperature
•Gradient 100 MV/m
•√s up to 3 TeV
•Physics + Detector studies for 350 GeV - 3 TeV Linear e⁺e⁻ colliders Luminosities: few 10³⁴ cm⁻²s⁻¹

ILC



- •Superconducting RF cavities (like XFEL)
- •Gradient 32 MV/m
- • $\sqrt{s} \le 500 \text{ GeV}$ (1 TeV upgrade option)
- •Focus on ≤ 500 GeV, physics studies also for 1 TeV

The International Linear Collider (ILC)

CLIC Implementation

Note: the design is currently being reoptmised, e.g. to include 350 GeV as the first stage ← Possible lay-out near CERN

♦ CLIC parameters

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	1500	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		312	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	100	100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.3	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.7	1.4	2
Main tunnel length		km	11.4	27.2	48.3
Charge per bunch	Ν	10 ⁹	3.7	3.7	3.7
Bunch length	σ_z	μm	44	44	44
IP beam size	σ_x/σ_y	nm	100/2.6	$\approx 60/1.5$	$\approx 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm		660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	660/25	—	—
Estimated power consumption	P _{wall}	MW	235	364	589

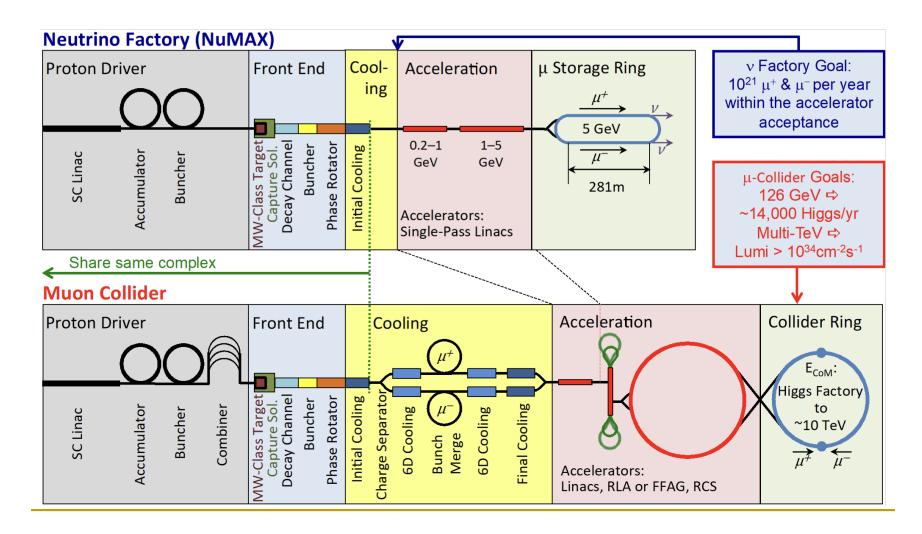
Physics with Muon Beams

Muon Beams and the Neutrino Sector

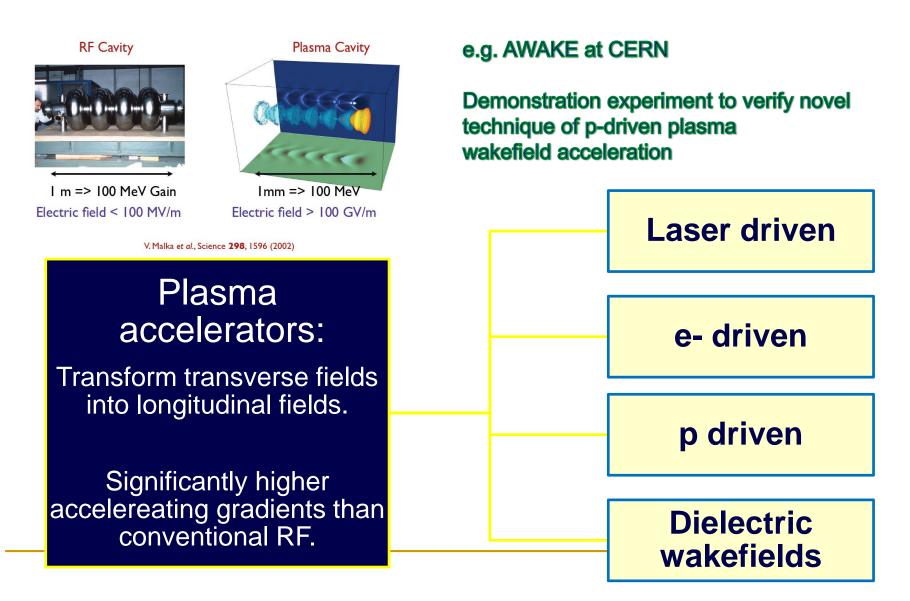
 $\mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \Rightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$ $\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Rightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$

Produces high energy neutrinos

- Decay kinematics well known
- $v_e \rightarrow v_\mu$ oscillations give easily detectable wrong-sign μ
- Muon Beams and the Energy Frontier
 - Point particle makes full beam energy available for particle production.


Couples strongly to Higgs sector

- Muon Collider has almost no synchrotron radiation
 - Narrow energy spread
 - □ Fits on existing laboratory sites


Muon Beam Challenges

- Muons created as tertiary beam ($p \rightarrow \pi \rightarrow \mu$)
 - Low production rate
 - Need target that can tolerate multi-MW beam
 - Large energy spread and transverse phase space
 - Need solenoidal focusing for the low-energy portions of the facility
 Solenoids focus in both planes simultaneously,
 - Need ionisation cooling, high-acceptance acceleration system & decay ring.
- Muons have short lifetime (2.2 µs at rest)
 - Mean distance travelled in the lab frame from production to decay
 - L = (p/mc) c tau with momentum p, mass m, lifetime at rest tau
 - Puts premium on rapid beam manipulations
 - □ High-gradient RF cavities (in magnetic field)
- Decay electrons give backgrounds in Collider detectors and instrumentation & heat load to magnets

Muon Accelerator Synergies

Plasma Accelerators

Bibliography

- Unifying Physics of Accelerators, Lasers and Plasma, Andrei Seryi, CRC Press, 2015
- The Physics of Particle Accelerators An Introduction, Klaus Wille, OUP, 2000
- An Introduction to Particle Accelerators, Edmund Wilson, OUP, 2001
- Engines of Discovery, Andrew Sessler & Edmund Wilson, World Scientific, 2006
- Engines of Discovery Revised & Expanded Edition, Andrew Sessler & Edmund Wilson, World Scientific, 2014