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Goals of this course

▶ Introduction to one of the core topics in accelerator physics.

▶ Explain the basics of the formalism.

▶ Give an idea of the related phenomenology.

▶ Full derivations are not included in main lectures.

▶ Most important thing: learn something and enjoy!
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Some references

Books
▶ Wilson, Introduction to Particle Accelerators.

▶ Lee, Accelerator Physics.

▶ Wiedemann, Particle Accelerator Physics.

▶ A, Wolski, Beam Dynamics in High Energy Particle Accelerators.

▶ E. Forest, Beam Dynamics: A new attitude framework.

▶ A. Chao, Handbook of Accelerator Physics and Engineering.

Lectures
▶ A. Latina, JUAS Lectures on Transverse Dynamics (2020).

▶ H. Garcia, JUAS Lectures on Transverse Dynamics (2021).

▶ CAS lectures.

▶ USPAS lectures.
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I did not know how complex an accelerator was...
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Why these lectures?

What do we want to study?

High energy particles traveling through intense magnetic fields (usually periodic).

Why transverse dynamics?

▶ It covers 2/3 of the phase space (4 out of 6 dimensions).

▶ Magnets act primarily on the transverse plane.
▶ Main accelerator parameters are determined (at first order) by transverse

properties:
▶ Luminosity, emittance, brilliance, beam losses, instabilities, tune...
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Special relativity recap.
We need to study the motion of charged particles at (very) high energy.

E =
√
p2c2 + (mc2)2 (1)

where m is the mass of the particle and p the particle momentum.

γ =
1√

1− v2

c2

(2)

Ultra-relativistic approximation γ ≫ 1:

E = pc (3)

What is faster?

1. An electron/positron at LEP (E = 100 GeV).

2. A proton in the LHC (E = 7000 GeV).
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Lorentz Force

The force experienced by a charge q and speed v under the influence of an electric
field E and a magnetic field B is given by the Lorentz equation:

F = q(E+ v × B) (4)

▶ Electric field E for increasing (decreasing) particle speed.

▶ Magnetic field B for bending particle trajectory.

Question: Why do we use magnets for bending the trajectory of the beam?
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Beam rigidity

Lorentz force:

FL = qvB (5)

Centripetal force:

Fc = m
v2

ρ
(6)

Null force condition (
∑

F = 0)

FL = Fc ⇒ p

q
= Bρ (7)

Beam rigidity:

Bρ ≈ 3.33p[GeV/c] (8)

Applications

▶ Given size and magnet technology determines
physics reach.

▶ Given magnet technology and physics goals
determines required size.

▶ Given size and physics goal determines
technology needed.
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Take home exercise

Given current technology (Bmax ∼ 10 T)

▶ What is the maximum energy of a particle accelerator around
the Earth equator?

▶ and of an accelerator around the Solar System?
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Harmonic oscillator is back
Restoring force:

F = −ku (9)

Equation of motion:

u′′ = − k

m
u (10)

Solution:

u = a cos(ωt + ϕ) (11)
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Frenet-Serret reference system

6D phase space: (x , x ,′ , y , y ′, z , δ)

The coordinates are relative to the
reference particle/trajectory.

Coordinate definition:

x ′ =
dx

ds
=

dx

dt

dt

ds
=

Px

Pz
≈ Px

P0
(12)

y ′ =
dy

ds
=

dy

dt

dt

ds
=

Py

Pz
≈ Py

P0
(13)

δ =
∆P

P0
(14)

Pay attention! This is not the set of
canonical variables used in Hamilton’s
equations.
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Multipolar expansion

Any magnetic field can be decomposed in:

By + iBx =
∞∑
n=1

cn(x + iy)n−1 (15)

where

cn = bn + ian (16)

▶ bn are the normal coefficients.

▶ an are the skew coefficients.
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Magnet types
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Magnet types: Dipoles

▶ Two magnetic poles.

▶ Bend particle trajectory.

▶ Provide weak focusing.

▶ Not required in linear colliders.

Take home exercise: LHC dipoles

The LHC contains 1232 dipole magnets.
Each is 15 m long.

▶ What is the length of the full
circumference?
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Magnet types: Quadrupoles

▶ Four poles.

▶ Focus the beam (horizontally or
vertically).

Normalized focusing strength:

k =
G

P/q
[m−2] (17)

k[m−2] ≈ 0.3
G [T/m]

P[GeV/c]/q[e]
(18)
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Magnet types: Quadrupoles

The focal length of a quadrupole is:

f =
1

k · L
[m] (19)

where L is the length of the quadrupole.

Example: Q1 LHC

L = 6.37m

kL = −5.54× 10−2m−1
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Magnet types: Quadrupoles

▶ The LHC upgrade will require stronger
focusing at IP1 and IP5.

▶ New quadrupole magnets with
stronger gradients are required.

▶ Successful tests on short models.
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Magnet types: Sextupoles

▶ Six poles.

▶ Correct chromatic aberrations.

▶ Usually distributed along the arcs.

▶ Essential for accelerator performance.

Other multipoles

▶ Octupoles.

▶ Decapoles.

▶ Dodecapoles.
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Hamiltonian approach

Hamiltonian of a particle with mass m, charge q and momentum p in presence of an
electromagnetic field (ϕ,A):

H = c
√

(p− qA) +m2c2 + qϕ (20)

Hamilton equation:
dq

dt
=

∂H

∂p

dp

dt
= −∂H

∂q
(21)

Equation (20) will be explained in future lectures including the derivation of the
dynamics.
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Hill’s equation

▶ We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s along the ring.

▶ The linear motion (dipoles and quadrupoles) can be described by:

u′′ + K (s)u = 0 (22)

where K (s) =
(

1
ρ2

+ k
)
is composed by linear fields only (dipole and quadrupole).
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Hill’s equation

u′′ + K (s)u = 0 (23)

Some remarks
▶ K (s) is a non-constant (s-dependent) restoring force.

▶ K (s) is a periodic function with period L ⇒ K (s + L) = K (s)

▶ Usually in the vertical plane 1/ρ = 0, therefore Ky = ky .

▶ In a quadrupole 1/ρ = 0 and Kx = −Ky i.e. a horizontal focusing quadrupole
defocuses in the vertical plane (and vice versa).

▶ In a bending magnet k = 0 so K = 1/ρ2.
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Hill’s equation: general solution

For K (s) = K (s + L):

u =
√
2Juβu(s) sin(ϕu(s)− ϕu0) (24)

u′ = −
√
2Ju

βu(s)
[cos(ϕu(s)− ϕu0 + sin(ϕu(s)− ϕu0)] (25)

where u = x , y .

Integration constants

▶ Action: J is a constant (related to
emittance).

▶ Phase constant: ϕ0.

▶ Beta-function: β(s), periodic function:

β(s + L) = β(s) (26)

▶ Phase advance: ϕ(s0|s) =
∫ s
s0

ds′

β(s′)
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Weak focusing and cyclotrons

In cyclotrons, only dipole magnets are used.
But still there is some focusing effect.

u′′ +

(
1

ρ2
+ k

)
u = 0 −−→

k=0
u′′ +

1

ρ2
u = 0

(27)

▶ Small and low energy accelerators.

▶ Example: mass spectrometer.

Figure: PSI cyclotron (250 MeV protons)
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Strong focusing (K > 0)

Initial conditions: x = x0, x
′ = x ′0 Solution:

x(s) = x0 cos(
√
Ks) +

x ′0√
K

sin(
√
Ks) (28)

x ′(s) = −x0
√
K sin(

√
Ks) + x ′0 cos(

√
Ks) (29)

Matrix formalism for a focusing quadrupole of length L:(
x
x ′

)
=

(
cos(

√
KL) 1√

K
sin(

√
KL)

−
√
K sin(

√
KL) cos(

√
KL)

)(
x0
x ′0

)
(30)
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Strong focusing (K < 0)

Initial conditions: x = x0, x
′ = x ′0 Solution:

x(s) = x0 cosh(
√
|K |s) + x ′0√

|K |
sinh(

√
|K |s) (31)

x ′(s) = −x0
√

|K | sinh(
√

|K |s) + x ′0 cosh(
√

|K |s) (32)

Matrix formalism for a defocusing quadrupole of length L:(
x
x ′

)
=

(
cosh(

√
|K |L) 1√

|K |
sinh(

√
|K |L)

−
√

|K | sinh(
√

|K |L) cosh(
√
|K |L)

)(
x0
x ′0

)
(33)
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Recap.

▶ Special relativity and magnetic properties.

▶ Reference system and Hill’s equation (without deviation).

▶ Solution of linear homogeneous Hill’s equations.

▶ Weak and strong focusing.

▶ Matrix formulation for dipoles and quadrupoles.

Next episode

▶ Generalization of matrix formalism.

▶ Twiss parameters in detail.

▶ Phase space.

▶ Example: FODO.

▶ Dispersion and chromaticity.
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End of the section meme
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Part II
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General matrix formalism

The transformation between x(s0) and x(s) can be expressed in a general way:

x(s) = M(s|s0)x(s0) (34)

where the application M(s|s0) can be expressed in matrix formalism:(
x
x ′

)
=

(
C (s|s0) S(s|s0)
C ′(s|s0) S ′(s|s0)

)(
x0
x ′0

)
(35)

where C and S are the cosine-like and sine-like functions and their derivatives C ′ and
S ′ with respect to s.
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Element concatenation

The transfer matrices for different elements of the lattice can be concatenated to find
the full transfer matrix between two locations s0 and s,

x(sn) = Mn(sn|sn−1) . . .M2(s2|s1)M1(s1|s0)x0 (36)

Remember to multiply matrices in reverse order!

Lattice design lectures

We will se more about how lattices are designed in practice in MADX.
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Thin lens approximation

When the focal length f of a quadrupole is much larger than the magnet itself Lq the
transfer matrices can be rewritten as,

Mfoc =

(
1 0
−1

f 1

)
(37)

Mdef =

(
1 0
1
f 1

)
(38)

Take home exercise
Derive the limits for the thin lens approximation and find the new matrices for
quadrupoles in thin lens approximation.
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Twiss parameters

u(s) =
√
2Juβu(s) sin(ϕu(s)− ϕu0) (39)

βu(s) is a periodic function given by the periodic properties of the lattice.

ϕ(s|s0) =
∫ s

s0

ds

β(s ′)
(40)

αu(s) = −1

2

dβu
ds

(41)

γu(s) =
1 + α2

u(s)

βu(s)
(42)
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Twiss parameters

u(s) =
√
2Juβu(s) sin(ϕu(s)− ϕu0) (43)

βu(s) is a periodic function given by the periodic properties of the lattice.

ϕ(s|s0) =
∫ s

s0

ds

β(s ′)
(44)

αu(s) = −1

2

dβu
ds

(45)

γu(s) =
1 + α2

u(s)

βu(s)
(46)
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Transfer matrix in terms of Twiss parameters

Aim: express M in terms of the initial and final Twiss parameters (instead of magnetic
properties).

Taking s(0) = s0 and ϕ(0) = ϕ0 we can obtain,

M =

 √
βs

β0
(cosϕs + α0 sinϕ0)

√
βsβ0 sinϕs

(α0−αs) cosϕs−(1+αsα0) sinϕs√
βsβ0

√
β0
βs
(cosϕ0 − αs sinϕs)

 (47)

This expression is very useful when Twiss parameters are known at two different

locations.
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How do we measure β and ϕ

Phase ϕ

▶ Harmonic analysis of oscillations.

Betatron tune Q

▶ FFT of transverse beam position over
many turns.

Beta function β

▶ β from phase.

▶ β from amplitude.

▶ K-modulation.
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One matrix to rule them all

If we take matrix M and consider the case for one full turn (i.e. βs = β0 and αs = α0)
the matrix simplifies,

M =

(
cosϕL + α0 sinϕL β0 sinϕL

γ0 sinϕL cosϕ0 − α0 sinϕL

)
(48)

The tune Q is the phase advance of the full ring in 2π units.

Q =
1

2π

∮
ds

β(s)
=

ϕL

2π
(49)

then, the one turn matrix M can be rewritten,

M =

(
cos(2πQ) + α0 sin(2πQ) β0 sin(2πQ)

γ0 sin(2πQ) cos(2πQ)− α0 sin(2πQ)

)
(50)
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Properties of transfer matrices

1. Phase space area preservation.
det(M) = 1 (51)

2. Motion is stable over N → ∞

|trace(M)| < 2 (52)
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Stability condition (derivation)

Let’s consider the transfer matrix M for a periodic system:

M =

(
a b
c d

)
(53)

we want the motion to be stable over N → ∞ turns.

xN = MNx0 (54)

How can we compute MN?
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Stability condition (derivation)

xN = MNx0 (55)

▶ det(M) = ad − bc = 1

▶ tr(M) = a+ d

If we diagonalise M, we can rewrite it as,

M = U ·
(
λ1 0
0 λ2

)
· UT (56)

where U is some unitary matrix and λ1 and λ2 its eigenvalues.
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Stability condition (derivation)

After N turns,

MN = U ·
(
λN
1 0
0 λN

2

)
· UT (57)

Given that det(M) = 1,

λ1λ2 = 1 → λ1,2 = e±ix (58)

To have stable motion, x ∈ R.
To find the eigenvalues, use characteristic
equation,

det(M − λI) =
∣∣∣∣a− λ b

c d − λ

∣∣∣∣ = 0 (59)

Solve it,

λ2 − (a+ d)λ+ (ad − bc) = 0

λ2 + trace(M)λ+ 1 = 0

trace(M) = λ+
1

λ
= e ix + e−ix = 2 cos x

Since x ∈ R,

|trace(M)| ≤ 2
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Twiss transport matrix and Twiss parameters evolution

Instead of transporting the coordinates x and x ′ we can transport the Twiss
parameters (β, α, γ),β

α
γ


s

=

 C 2 −2CS S2

−CC ′ CS ′ + SC ′ −SS ′

C ′2 −2C ′S ′ S ′2

β
α
γ


0

(60)

▶ Given the Twiss parameters at any point in the lattice we can transform them and
compute their values at any other point in the ring.

▶ The transfer matrix is given by the focusing properties of the lattice elements, the
same matrix elements to compute single particle trajectories.
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Phase space properties

▶ Area is preserved.

▶ Beam size: σu =
√
Juβu.

▶ When σu is large σu′ is small.

▶ In a β minimum/maximum α = 0 and
the ellipse is not tilted.

J = γx2 + 2αxx ′ + βx ′2 (61)
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Phase space properties

J = γx2 + 2αxx ′ + βx ′2 (62)
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Normalized phase space

Can we use another reference frame so it is simpler to describe the system?

M =

(
cosϕ sinϕ
− sinϕ cosϕ

)
(63)

For linear systems is fine but it gets much more complex when non-linearities are
included (we will see more details in the tutorial).
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Beam emittance: single particle definition

The geometric emittance is a constant of motion only if the beam energy is preserved
(conservative system). This quantity is related to the action J that appeared in the
solution of the Hill’s equation.

Normalized emittance takes into account
beam energy. It is a constant of motion
even if energy is not constant:

ϵn ≡ βrelγrelϵ (64)

The beam size at any location of the
lattice is given by,

σ =
√

ϵβ (65)
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Beam emittance: statistical definition

The beam is composed of particles
distributed in phase space. Statistical emittance is defined by,

ϵrms =
√
σ2
uσ

2
u′ + σ2

uu′ (66)

The rms emittance of a ring in phase
space, i.e. particles uniformly distributed in
phase ϕ at a fixed action J, is,

ϵrms = ⟨J⟩. (67)

If the accelerator is composed of linear
elements, and no dissipative forces act ϵrms

is invariant.
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Beam emittance: phenomenology

What determines beam emittance
▶ Amount of particles.

▶ Injector manipulation.

▶ Beam transfer efficiency.

Sources of emittance growth

▶ Intrabeam scattering.

▶ Beam-beam interaction.

▶ Residual gas scattering.

▶ Optics missmatch.

▶ Nonlinearities and resonances.

▶ Ground motion and PS ripple.

49 / 63



Liouville’s theorem and symplectic condition

Liouville’s equation describes the time evolution of the phase space distribution
function ρ(q, p; t),

dρ

dt
=

∂ρ

∂t
+

N∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= 0 (68)

where (qi , pi ) are the canonical coordinates of the Hamiltonian system.
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Symplectic condition

Liouville’s theorem ⇒ invariant volume in phase space. The symplectic condition reads,

MT JM = J (69)

where J is the 6D sympelctic matrix

J =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 (70)

Take home exercise
Prove that Eq. (69) holds for the matrices described above.
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FODO lattice (The ”Hello World” example)
The FODO lattice is a sequence of a Focusing magnet (F), a Drift space (O), a
Defocusing magnet (D) and a second drift space.

MFODO = M0MdefM0Mfoc =

(
1 + L

2f L+ L2

4f

− L
2f 2

1− L
2f − L2

4f 2

)
(71)
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FODO lattice (The ”Hello World” example)

Take-home exercise
Prove that the stability condition for a FODO lattice is given by:

f >
L

4
(72)

What if
We take the FODO lattice and replace drifts by bending magnets?
We will see this in next lectures...
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The end of the ideal world

So far, we have considered ideal linear systems.
While, in the real world...

▶ Dispersion.

▶ Chromaticity.

▶ Misalignment.

▶ Magnetic errors.

▶ ...

Some of these topics will be covered in next lectures.

54 / 63



Dispersion

What if particles in a bunch have different
momenta?
Remember beam rigidity:

Bρ =
P

q
(73)

Orbit:

x(s) = D(s)
∆P

P0
(74)

where D(s) is the dispersion function, an
intrinsic property of dipole magnets.

0

p=p
0

p<p
0

p>p
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Dispersion

Inhomogeneus Hill’s equation:

u′′ +

(
1

ρ2
+ k

)
u =

1

ρ

∆P

P0
(75)

Particle trajectory:

u(s) = uβ(s) + uD(s) =

= uβ(s) + D(s)
∆P

P
(76)

where D(s) is the solution of:

D ′′(s) + K (s)D(s) =
1

ρ
(77)
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Dispersion

Solution:

U(s) = C (s)u0 + S(s)u′0 + D(s)
∆P

P
(78)

this can be added to the transfer matrix
representation,

M =

C S D
C ′ S ′ D ′

0 0 1

 (79)

Dipole transfer matrix:
cos
(
L
ρ

)
ρ sin

(
L
ρ

)
ρ
(
1− cos

(
L
ρ

))
−1

ρ sin
(
L
ρ

)
cos
(
L
ρ

)
sin
(
L
ρ

)
0 0 1


(80)

Quadrupole transfer matrix (expanded): cos(
√
KL) 1√

K
sin(

√
KL) 0

−
√
K sin(

√
KL) cos(

√
KL) 0

0 0 1


(81)
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Chromaticity

All particles do not have the same energy. Therefore, they focalize at different points.

This defines chromaticity,

ξ = − 1

4π

∮
β(s)k(s)ds (82)
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How to correct chromaticity

Sextupoles, through a non-linear magnetic
field, correct the effect of energy spread
and focuses particles at a single location.

▶ Located in dispersive regions.

▶ Usually in arcs.

▶ Sextupole families.

Now is when the party starts

▶ Sextupoles introduce non-linear fields.

▶ ...i.e. they induce non-linear motion.

▶ resonances, tune shifts, chaotic
motion.
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Chromaticity correction

▶ Chromatic aberrations must be compensated in both planes.

ξx = − 1

4π

∮
βx(s)[k(s)− SFDx(s) + SDDx(S)]ds (83)

ξy = − 1

4π

∮
βy (s)[k(s) + SFDx(s)− SDDx(S)]ds (84)

▶ To minimise sextupole strength they must be located near quadrupoles where βD
is large.

▶ For optimal independent correction SF should be located where βx/βy is large and
SD where βy/βx is large.
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Recap.

▶ Optics functions and parameters.

▶ Phase space and emittance.

▶ Example: FODO lattice.

▶ Dispersion and chromaticity.
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What do we do with this?

▶ We have covered the basic aspects of transverse dynamics.

▶ I skipped most of the derivations. You can follow references.

▶ In the next two weeks: lattice design and tutorials for a more complete picture.

▶ Now you are ready to take the following lectures to become accelerator experts.
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Thank you very much!
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