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Goals of this course

Introduction to one of the core topics in accelerator physics.

Explain the basics of the formalism.

| 2

>

» Give an idea of the related phenomenology.

» Full derivations are not included in main lectures.
>

Most important thing: learn something and enjoy!
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Some references
Books
» Wilson, Introduction to Particle Accelerators.
Lee, Accelerator Physics.
Wiedemann, Particle Accelerator Physics.

>
>
> A, Wolski, Beam Dynamics in High Energy Particle Accelerators.
» E. Forest, Beam Dynamics: A new attitude framework.

>

A. Chao, Handbook of Accelerator Physics and Engineering.

Lectures
» A. Latina, JUAS Lectures on Transverse Dynamics (2020).
» H. Garcia, JUAS Lectures on Transverse Dynamics (2021).
» CAS lectures.
» USPAS lectures.
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The Matter
of Everything
A History

of Discovery

‘An all-action thriller, laced with some of
the most profound ideas humans have ever had’
Brian Eno

f= = Suzie Sheehy
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| did not know how complex an accelerator was...




Why these lectures?

What do we want to study?
High energy particles traveling through intense magnetic fields (usually periodic).

Why transverse dynamics?

» It covers 2/3 of the phase space (4 out of 6 dimensions).

» Magnets act primarily on the transverse plane.

» Main accelerator parameters are determined (at first order) by transverse
properties:
» Luminosity, emittance, brilliance, beam losses, instabilities, tune...
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Special relativity recap.
We need to study the motion of charged particles at (very) high energy.

E = /p2c + (mc2)? (1)
where m is the mass of the particle and p the particle momentum.
r=—— )
-5
Ultra-relativistic approximation v > 1:
E =pc (3)

What is faster?
1. An electron/positron at LEP (E = 100 GeV).

2. A proton in the LHC (E = 7000 GeV).
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Lorentz Force

The force experienced by a charge g and speed v under the influence of an electric
field E and a magnetic field B is given by the Lorentz equation:

F=qg(E+vxB) (4)

» Electric field E for increasing (decreasing) particle speed.

> Magnetic field B for bending particle trajectory.

Question: Why do we use magnets for bending the trajectory of the beam?
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Beam rigidity

Lorentz force:
F. = qvB (5)

Centripetal force:

2
v
Fc=m— 6
c=m> (6)
Null force condition (> F = 0)
P _
Fi=Fo==Bp ()

Beam rigidity:

Bp =~ 3.33p[GeV/(] (8)

Applications
» Given size and magnet technology determines
physics reach.

» Given magnet technology and physics goals
determines required size.

» Given size and physics goal determines
technology needed.
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Take home exercise

Given current technology (Bmax ~ 10 T)

» What is the maximum energy of a particle accelerator around
the Earth equator?

» and of an accelerator around the Solar System?
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Harmonic oscillator is back

Restoring force:

F=—ku (9 Solution:
Equation of motion: u = acos(wt + ¢) (11)
k
J'=——u (10)
m
System Time Series Phasze Portrait

Positien

Plos ition
—

Magnitude

>

Velocity

=
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Frenet-Serret reference system

Coordinate definition:
6D phase space: (x,x,,y,y’,z,0)

, dx dxdt Py Py

XX A T Tx (12
X T ds ditds P, Py (12)
dy dydt P P
,:—:——:7}/%7}/ 1
Y =4 dids P, P, (13)
AP
_2F 14
d Py (14)

The coordinates are relative to the

) . Pay attention! This is not the set of
reference particle/trajectory.

canonical variables used in Hamilton's
equations.
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Multipolar expansion

Any magnetic field can be decomposed in:

B, + iBx = Z cn(x +iy)" 1 (15)
n=1
where
Cn == bn + ian (16)

» b, are the normal coefficients.

» a, are the skew coefficients.
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Magnet types

dipole quadrupole sextupole octupole
q hi N

N N s

S S s N
N N S
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Magnet types: Dipoles

» Two magnetic poles.
» Bend particle trajectory.
» Provide weak focusing.

» Not required in linear colliders.

Take home exercise: LHC dipoles
The LHC contains 1232 dipole magnets.
Each is 15 m long.

» What is the length of the full
circumference?
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Magnet types: Quadrupoles

» Four poles.

» Focus the beam (horizontally or
vertically).

Normalized focusing strength:

_ G
P/q

G[T/m]
P[GeV/c]/q[e]

k [m~2] (17)

k[m=2] ~ 0.3 (18)
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Magnet types: Quadrupoles

The focal length of a quadrupole is:

1
f= 7l (19)

where L is the length of the quadrupole.
Example: Q1 LHC

L =6.37m
kL = —5.54 x 10 2m~!
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Magnet types: Quadrupoles

» The LHC upgrade will require stronger
focusing at IP1 and IP5.

» New quadrupole magnets with
stronger gradients are required.

» Successful tests on short models.

Iron Yoke LHe SS
Vessel

Al Shell

Coil

Alignment g Alignment
Fin Key
Al Collar
Load Key
Titanium
Bladder pole
Slot
Cooling

Pole Key Hole
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Magnet types: Sextupoles

» Six poles.
» Correct chromatic aberrations.

» Usually distributed along the arcs.

» Essential for accelerator performance.

Other multipoles
» Octupoles.
» Decapoles.

» Dodecapoles.
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Hamiltonian approach

Hamiltonian of a particle with mass m, charge g and momentum p in presence of an
electromagnetic field (¢, A):

H = C\/(p —qA) + m?c? + q¢ (20)
Hamilton equation:
dg _oH dp _ M
dt  9op dt  Oq
Equation (20) will be explained in future lectures including the derivation of the
dynamics.

(21)
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Hill's equation

» We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s along the ring.

» The linear motion (dipoles and quadrupoles) can be described by:
V' +K(s)u=0 (22)

where K(s) = (p—lz + k) is composed by linear fields only (dipole and quadrupole).
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Hill's equation

J'+ K(s)u=0 (23)

Some remarks

» K(s) is a non-constant (s-dependent) restoring force.

» K(s) is a periodic function with period L = K(s + L) = K(s)
» Usually in the vertical plane 1/p = 0, therefore K, = k, .
>

In a quadrupole 1/p =0 and K, = —K|, i.e. a horizontal focusing quadrupole
defocuses in the vertical plane (and vice versa).

» In a bending magnet k =0 so K = 1/p°.
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Hill's equation: general solution

For K(s) = K(s+ L):

u= 2Ju/6u(s) 5i”(¢u(5) - ¢u0) (24)
2Jy :
v= _%/;[COS(QSU(S) — ¢uo +sin(Pu(s) — ¢uo)] (25)
where u = x, y.
Integration constants » Beta-function: /(s), periodic function:
» Action: Jis a constant (related to B(s+ L) = B(s) (26)
emittance).
» Phase constant: ¢y. » Phase advance: ¢(sp|s) = fsz 5‘2’2//)
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Weak focusing and cyclotrons

In cyclotrons, only dipole magnets are used.
But still there is some focusing effect.

1 1
u”+< +k>u—0—>u"+2u:
p? =0 P

» Small and low energy accelerators.

» Example: mass spectrometer.

Figure: PSI cyclotron (250 MeV protons)
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Strong focusing (K > 0)

Initial conditions: x = xp, x’ = x{; Solution:

x(s) = xo cos(VKs) + \)/(6? sin(VKs) (28)
X'(5) = —xoVK sin(VKs) + x} cos(VKs) (29)

Matrix formalism for a focusing quadrupole of length L:

<§’> - (—\;ORS(S:Z(R\/L)RL) Vlf;;%“) <§Z> (30)
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Strong focusing (K < 0)

Initial conditions: x = xp, x’ = xj Solution:

x(s) = xo cosh(y/[K]s) + \/X%sinh( K|s) (31)
= —xo/|K]sinh(\/|K]s) + x§ cosh(+/|K]s) (32)

Matrix formalism for a defocusing quadrupole of length L:

<X> ( cosh(+/]K]L) Fsmh \/WL> (X0> 33)

/
V|K|sinh(y/|K|L) cosh(+/|K|L)

X
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Special relativity and magnetic properties.

Reference system and Hill's equation (without deviation).

Solution of linear homogeneous Hill's equations.
Weak and strong focusing.

Matrix formulation for dipoles and quadrupoles.

Next episode

| 2

>
>
>
>

Generalization of matrix formalism.
Twiss parameters in detail.

Phase space.

Example: FODO.

Dispersion and chromaticity.
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End of the section meme

i e

29/63



Part |l
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General matrix formalism

The transformation between x(sp) and x(s) can be expressed in a general way:
x(s) = M(s|so)x(s0) (34)
where the application M(s|sp) can be expressed in matrix formalism:
() - (Sl sty () 5
X C'(s|so) S'(sls0)/) \xg

where C and S are the cosine-like and sine-like functions and their derivatives C’ and
S’ with respect to s.
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Element concatenation

The transfer matrices for different elements of the lattice can be concatenated to find
the full transfer matrix between two locations sy and s,

X(Sn) = M,,(s,,\s,,_l) e M2(52‘51)M1(51‘50)X0 (36)

Remember to multiply matrices in reverse order!

Lattice design lectures

We will se more about how lattices are designed in practice in MADX.

32/63



Thin lens approximation

When the focal length f of a quadrupole is much larger than the magnet itself Ly the
transfer matrices can be rewritten as,

Mroc = (_1 ‘1’) (37)

1
f
0
Myef = ( 1) (38)
Take home exercise

Derive the limits for the thin lens approximation and find the new matrices for
quadrupoles in thin lens approximation.

K= =
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Twiss parameters

u(s) = /2JuBu(s) sin(¢u(s) — duo)

Bu(s) is a perlodlc function given by the periodic properties of the lattice.
Bendh

IlIIIIIIIIlIIIIIIIII
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Twiss parameters

U(S) = 2Ju/8u(5) Sin(d’u(s) - (;SUO) (43)
Bu(s) is a periodic function given by the periodic properties of the lattice.
Twiss IR1B1 Bend h
_ ° ds
6000 - slsp) = 44
<000 | d)( | 0) % /3(5/) ( )
E
= 4000 - 1 d/Bu
3000 - u = — 3 4
als) = 5 (45)
2000 - 1 + az (S)
1000 Yu(s) = __—urTJ 46
0 =LK &= ( ) BU(S) ( )

35/63



Transfer matrix in terms of Twiss parameters

Aim: express M in terms of the initial and final Twiss parameters (instead of magnetic
properties).

Taking s(0) = sp and ¢(0) = ¢ we can obtain,

v B (cos s + ag sin o) V/BsPosin ¢ )
(ap—ars) cos ¢sgs(ﬁ10+ozsao) sin ¢s % (COS b0 — s sin ¢5)

This expression is very useful when Twiss parameters are known at two different

locations.
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How do we measure $ and ¢

Phase ¢

» Harmonic analysis of oscillations.

Betatron tune @

» FFT of transverse beam position over
many turns.

Beta function (8
» [ from phase.

» 3 from amplitude.

» K-modulation.
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One matrix to rule them all

If we take matrix M and consider the case for one full turn (i.e. 8s = By and as = )
the matrix simplifies,

_ [cos¢p + agsingy Bosin ¢
M= < Yo sin ¢ cos ¢g — g sin ¢ (48)

The tune Q is the phase advance of the full ring in 27 units.

1 ds ¢L
= ¢ — =1 49
Q 27 (s) 2« (49)
then, the one turn matrix M can be rewritten,
M= cos(2m Q) + ap sin(27 Q) Bosin(27 Q) (50)
N Y0 sin(27 Q) cos(27Q) — apsin(27 Q)
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Properties of transfer matrices

1. Phase space area preservation.
det(M) =1 (51)

2. Motion is stable over N — oo

|trace(M)| < 2 (52)
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Stability condition (derivation)

Let's consider the transfer matrix M for a periodic system:

M= (j 3) (53)

we want the motion to be stable over N — oo turns.

XN = MNX() (54)

How can we compute MN?
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Stability condition (derivation)

XN = MNX()

» det(M) =ad — bc=1
» tr(M)=a+d
If we diagonalise M, we can rewrite it as,

B M0 -
w=u-( D)0

where U is some unitary matrix and A; and A3 its eigenvalues.
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Stability condition (derivation)

After N turns,

AV0
MY =u- < ! > uT 57
0 Ay (57)
Given that det(M) =1, Solve it,
Mo =1-Mp=er™  (58) A2 —(a+d)A+(ad — bc) =0

2
To have stable motion, x € R. A° +trace(M)A+1=0

To find the eigenvalues, use characteristic

— 1 _ ix —ix __
equation, trace(M) = A+ - = e™ + e ™ =2cosx

A

Since x € R,
det(M—an =2~ P

|trace(M)| < 2
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Twiss transport matrix and Twiss parameters evolution

Instead of transporting the coordinates x and x’ we can transport the Twiss
parameters (3, a, ),

3 2 —2¢S  S2\ /8
al =|-cc cs+sc —ss'||a (60)
y C/2 —2C's’ 5/2 ol o

S
» Given the Twiss parameters at any point in the lattice we can transform them and
compute their values at any other point in the ring.

» The transfer matrix is given by the focusing properties of the lattice elements, the
same matrix elements to compute single particle trajectories.
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Phase space properties

» Area is preserved.
» Beam size: 0, = J,0,.
» When o, is large o,/ is small.

» In a 8 minimum/maximum a = 0 and
the ellipse is not tilted.

? slope = %“/g:‘z‘z =- YE
Omax =V 02 =VTE slope = ry ‘/3:1212 = %
e
Ot = Vﬂzz(“';):\/% /
s | +r21emax
Xmax =V O =‘/E "
CENTROID X = Vou,(1-12) =\/§
2 / 2

J = yx° 4+ 2axx’ + Bx (61)
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Phase space properties

VOz=
\nl—m f /
s

1
Tay 011

[a
slope = 1y, 0_??

0
A F21Xmax
—

* T21 8max

CENTROID

X

J= ’7X2 + 2axx’ + BX’Z

slope = — —.

=-%
B
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Normalized phase space

Can we use another reference frame so it is simpler to describe the system?

Mo ( cos¢  sin ¢> (63)

—sing cos¢

/ Normalization
/ X l X

For linear systems is fine but it gets much more complex when non-linearities are
included (we will see more details in the tutorial).
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Beam emittance: single particle definition

The geometric emittance is a constant of motion only if the beam energy is preserved
(conservative system). This quantity is related to the action J that appeared in the
solution of the Hill's equation.

Normalized emittance takes into account
beam energy. It is a constant of motion e
even if energy is not constant: e

€n = BrelVrel€ (64)

The beam size at any location of the
lattice is given by,

o=/eB (65)
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Beam emittance: statistical definition

The beam is composed of particles
distributed in phase space.

XI

Statistical emittance is defined by,

€rms = 4/ 0’305/ + 0'12“1/ (66)

The rms emittance of a ring in phase
space, i.e. particles uniformly distributed in
phase ¢ at a fixed action J, is,

€rms = (J). (67)

If the accelerator is composed of linear
elements, and no dissipative forces act €;ms
is invariant.
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Beam emittance: phenomenology

Sources of emittance growth

. ) » |ntrabeam scattering.
What determines beam emittance &

. » Beam-beam interaction.
» Amount of particles.

: : . > Residual gas scattering.
» Injector manipulation. & &

> Beam transfer efficienc » Optics missmatch.
m transfer efficiency. _ N
» Nonlinearities and resonances.

» Ground motion and PS ripple.

—

(a1 machine phass spocs 8 urmaiched team injechnd [} filamenting heam Cdi fully Elame=sos] beam
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Liouville's theorem and symplectic condition

Liouville's equation describes the time evolution of the phase space distribution
function p(q, p; t),

%203 (2o ) -0 )

I

where (g;, p;) are the canonical coordinates of the Hamiltonian system.
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Symplectic condition

Liouville's theorem =- invariant volume in phase space. The symplectic condition reads,
MTIM = J (69)

where J is the 6D sympelctic matrix

0 1. 0o 0 0 O
-1 0 0 0 0 O
0 0 01 0 O
/= 0 0 -1 0 0 O (70)
0 0 0 0 0 1
0 0 0 0 -1 0

Take home exercise
Prove that Eq. (69) holds for the matrices described above.
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FODO lattice (The "Hello World” example)

The FODO lattice is a sequence of a Focusing magnet (F), a Drift space (O), a
Defocusing magnet (D) and a second drift space.

3 0 D O /somp!e trajectory
T e ST { < -~
== =Bl i o ‘ \\‘S
W’ envelope
s L !
cell length
2
1+4 L+ L&
Mropo = MoMyes Mo Mioe = ( 1_2f 1 L 4f 12 (71)
T 2r2 T 2f T af?
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FODO lattice (The "Hello World” example)

Take-home exercise
Prove that the stability condition for a FODO lattice is given by:

L
f>- 2
> (72)

What if
We take the FODO lattice and replace drifts by bending magnets?
We will see this in next lectures...
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The end of the ideal world

So far, we have considered ideal linear systems.
While, in the real world...

» Dispersion.

» Chromaticity.
» Misalignment.
» Magnetic errors.
> ..

Some of these topics will be covered in next lectures.
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Dispersion

What if particles in a bunch have different ) P>P
momenta? p=p,
Remember beam rigidity: /
P - P<B,
Bp=— 73
= (73)
Orbit: AP
x(s) = D(s)— (74)
Po

where D(s) is the dispersion function, an
intrinsic property of dipole magnets.
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Dispersion

Inhomogeneus Hill's equation:

1 1AP
u”+<+k>u: 75
p? p Po (75)

Particle trajectory:

u(s) = up(s) + up(s) =

where D(s) is the solution of:

D"(s) + K(s)D(s) = ; (77)

56 /63



Dispersion

Solution:

AP
U(s) = C(s)uo + S(s)ug + D(s)? (78)
this can be added to the transfer matrix

representation,

Dipole transfer matrix:

cos | = sin | = —cos | =
(5) osin(3) o(1-ces(5))
—% sin p(é) cos (5) sin (%) '
0 0 1
(80)
Quadrupole transfer matrix (expanded):

cos(VKL) #sin(\/RL) 0
—VKsin(VKL)  cos(vVKL) 0
0 0 1

(81)
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Chromaticity

All particles do not have the same energy. Therefore, they focalize at different points.

F 0 D 0 F

sample trapectory
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How to correct chromaticity

Sextupoles, through a non-linear magnetic
field, correct the effect of energy spread
and focuses particles at a single location.

Aplp >0 focal length ——
N

I —

Ap/p =0 I
S S|
b —
/

quadrupole l T

I
Ap/p <0 - sextupole

]
|
[

» Located in dispersive regions.
» Usually in arcs.

» Sextupole families.

Now is when the party starts

» Sextupoles introduce non-linear fields.

» ...i.e. they induce non-linear motion.

P> resonances, tune shifts, chaotic
motion.
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Chromaticity correction

» Chromatic aberrations must be compensated in both planes.

1
&=~ 4  S)K(S) — SeDL(s) + SoDx(S)]ds (83)
1
&=~ 4  HS)KE) + SeDL(s) — SoDx(S)]ds (84)
» To minimise sextupole strength they must be located near quadrupoles where 5D

is large.

» For optimal independent correction Sg should be located where /0, is large and
Sp where 3, /fy is large.
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Recap.

Optics functions and parameters.
Phase space and emittance.
Example: FODO lattice.
Dispersion and chromaticity.
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What do we do with this?

» We have covered the basic aspects of transverse dynamics.
» | skipped most of the derivations. You can follow references.
» In the next two weeks: lattice design and tutorials for a more complete picture.

» Now you are ready to take the following lectures to become accelerator experts.
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Thank you very much!

A
___Me at CERN
B - an

.'.{ . : .“
ey
b4 \

- &

My knowiedge and skills
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