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Radiation Damping

In the previous lecture, we have seen that the emission of synchrotron radiation leads to 
the damping of oscillations in all three planes.

The damping times can be summarised by the equation
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𝜏𝑖
=

𝐽𝑖𝑈0

2𝐸0𝑇0
∝ 𝛾3

The 𝐽𝑖  are the damping partition numbers

𝐽𝑥 = 1 − 𝒟 𝐽𝑦 = 1 𝐽𝜖 = 2 + 𝒟

The sum of the damping partition numbers is constant, i.e. 𝐽𝑥 + 𝐽𝑦 + 𝐽𝜖 = 4

By adjusting 𝒟 it is possible to transfer some damping between the longitudinal and 
horizontal planes. In order to have stable motion in all three places, we require

𝐽𝑖 > 0

−2 < 𝒟 < 1



Quantum Emission of Synchrotron Radiation

In arriving at these results, we have assumed that the energy loss is continuous. The 
equations of motion established so far also imply that the electron bunch will 
eventually collapse to a single point. The fact that this does not happen is due to the 
quantised nature of synchrotron radiation emission (discrete photons).

In reality, the radiated energy is emitted in quanta of energy 𝑢 = ℏ𝜔, with the emission 
time and energy of individual photons random and statistically independent. This 
randomness introduces diffusion in the motion, causing growth in the oscillation 
amplitudes.

The combination of quantum excitation and radiation damping eventually lead to an 
equilibrium state in all three planes.

The distribution of photon energies can be found from the previously derived spectrum 
of synchrotron radiation.



Recap: Synchrotron Radiation Spectrum 

The instantaneous power radiated by a single electron is 
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Photon Distribution

Given the photons are emitted in discrete quanta with energy 𝑢 = ℏ𝜔, the most important 
quantity from a beam dynamics perspective is the instantaneous rate of emission of 
photons. 

We can define the average number of photons radiated per second within a unit energy 
interval as:

𝑛 𝑢 Δu =
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Substituting for the energy spectrum, total power and critical frequency, we find

𝑛 𝑢 =
P

𝑢𝑐
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𝑢
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𝑢
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where 𝑢𝑐 = ℏ𝜔𝑐.

We now have:

𝑛 𝑢 : number of photons emitted per unit time at energy 𝑢 within range d𝑢
𝑢 ∙ 𝑛 𝑢 : energy emitted per unit time at energy 𝑢 within range d𝑢



Photon Distribution

Photon distribution function:

From this distribution, we can now calculate several useful quantities related to the 
number of photons emitted per second:
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Quantum Fluctuations in Synchrotron Motion

Neglecting radiation damping, the basic equations of motion in the longitudinal plane are

𝜖 𝑡 = 𝐴cos 𝜔𝑠𝑡 + 𝜙𝑠

𝜏 𝑡 = −
𝛼𝑐

𝐸0𝜔𝑠
𝐴sin 𝜔𝑠𝑡 + 𝜙𝑠

where 𝜔𝑠 is the synchrotron frequency, 𝜙𝑠 is the synchronous phase and 𝛼𝑐 is the 
momentum compaction factor. 

The invariant 𝐴 is therefore

𝐴2 = 𝜖2 𝑡 +
𝐸0𝜔𝑠

𝛼𝑐

2

𝜏2(𝑡)

After the emission of a photon, the time variable remains constant, but the energy offset 
becomes 𝜖 → 𝜖 − 𝑢 and there is a change in the invariant 

𝛿𝐴2 = −2𝜖𝑢 + 𝑢2

In contrast to the analysis of the radiation damping, this time we keep the term in 𝑢2 since 
it is a random variable and non-negligible. 



Quantum Fluctuations in Synchrotron Motion

The change in the invariant therefore consists of two terms, one that gives rise to the 
radiation damping and one related to the quantum excitation:

𝛿𝐴2 = −2𝜖𝑢 + 𝑢2

We wish to calculate the average rate of change in the invariant due to the quantum 
excitation. This is found by summing together the effect of the 𝑛 𝑢 𝑑𝑢 photons emitted in 
each energy band 𝑑𝑢

𝑑𝐴2

𝑑𝑡
= න

0

∞

𝑢2𝑛 𝑢 𝑑𝑢 = 𝑁𝛾 𝑢2

i.e. each event changes 𝐴2 by an amount 𝑢2 on average, and this is happening at a rate of 
𝑁𝛾 per second.

Although both 𝑁𝛾 and 𝑢2  vary around the ring, the effects we are interested in occur 

slowly compared to the revolution time. As such we can average over many turns around 
the design orbit.

Radiation damping 
(decrement depends on energy deviation) 

Quantum excitation
(always increases the amplitude)



Quantum Fluctuations in Synchrotron Motion

Returning to the term linear in 𝑢 (the radiation damping term), we have for an individual 
photon emission

𝛿𝐴2 = −2𝜖𝑢

Since the energy loss 𝑢 depends on the particle energy deviation 𝜖, this term is non-zero 
after averaging over one synchrotron oscillation period. We can substitute in for the 
average energy loss 𝑢  and average around the ring to get the rate

𝑑𝐴2

𝑑𝑡
= −2𝜖𝑁𝛾 𝑢 = −2𝜖
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𝑑𝑈 𝜖

𝑑𝜖

where we have Taylor expanded the energy loss per turn 𝑈 𝜖 = 𝑇0𝑁𝛾 𝑢  for small 𝜖. As 

before, we see the change in 𝐴2 scales with energy. Given 𝜖 𝑡 = 𝐴cos 𝜔𝑠𝑡 + 𝜙𝑠  we have 
the result 𝜖2 = 𝐴2 /2, and from the previous lecture we also have the definition
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Substituting in, we see that after averaging over one turn we have for the damping term

𝑑𝐴2

𝑑𝑡
= −

𝐴2

𝑇0

𝑑𝑈

𝑑𝜖
= −

2 𝐴2

𝜏𝜖



Quantum Fluctuations in Synchrotron Motion

We now have a differential equation describing the total rate of change of the invariant

𝑑𝐴2

𝑑𝑡
= −

2 𝐴2

𝜏𝜖
+ 𝑁𝛾 𝑢2

At equilibrium, this rate of change is zero, and so the mean value of 𝐴2 is simply

𝐴2 =
𝜏𝜖

2
𝑁𝛾 𝑢2

For sinusoidal energy oscillations, the expectation value of 𝜖 is zero, and of its square is just 
half of the amplitude squared, i.e.

𝜖2 =
𝐴2

2
=

𝜏𝜖

4
𝑁𝛾 𝑢2

Note that in this case 𝜖2  is the absolute energy deviation. Substituting in for 𝜏𝜖, 𝑁𝛾 and

𝑢2 , we can write the final result for the relative energy spread as

𝜎𝜖
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32 3
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Quantum Fluctuations in Synchrotron Motion

Assuming the distribution in energy is Gaussian, neglecting impedance effects the 
distribution in time will also be Gaussian.

From the basic equations of motion in the longitudinal plane, the standard deviation in 
time (bunch length) is related to the energy spread by 

𝜎𝜏 =
𝛼𝑐

𝜔𝑠
𝜎𝜖

where once again 𝜎𝜖 is the relative energy spread.

The natural bunch length depends on many factors, such as RF voltage, energy loss per 
turn, relative energy spread, momentum compaction factor and ring circumference.

In reality, the impedance of the surrounding vacuum chamber (and indeed the emitted 
synchrotron radiation) can have a significant impact on the equilibrium distribution in the 
longitudinal plane, lengthening the bunch.

Many storage rings also include harmonic cavities in order to further modify the bunch 
length, altering the lifetime and instability thresholds.

Intra-beam scattering can also have an impact on both energy spread and bunch length.



Quantum Fluctuations in Synchrotron Motion

no damping with damping damping and excitation

Converges to 
synchronous, on-
energy particle

Random fluctuations with 
mean-square value 𝜖2



Quantum Fluctuations in Horizontal Motion

Recall: for the horizontal plane, the Courant-Snyder Invariant is related to the horizontal 
position (𝑥) and angle (𝑥′) by

𝐴2 = 𝛾𝑥𝑥2 + 2𝛼𝑥𝑥𝑥′ + 𝛽𝑥𝑥′2

If a photon of energy 𝑢 is emitted at a point where the dispersion is non-zero, then 
although the absolute 𝑥 and 𝑥′ remain unchanged, the change in energy of the particle 
causes the particle to oscillate around the new dispersive orbit, i.e.

𝛿𝑥𝛽(𝑠) = −𝛿𝑥𝜖(𝑠) = −𝐷(𝑠)
𝑢

𝐸0

𝛿𝑥′
𝛽(𝑠) = −𝛿𝑥′

𝜖(𝑠) = −𝐷′(𝑠)
𝑢

𝐸0

Inserting these into the equation for the Courant Snyder invariant, we find terms both 
linear and quadratic in 𝑢. The terms linear in 𝑢 are the radiation damping terms we studied 
previously. We now have the additional quantum excitation terms quadratic in 𝑢:

𝛿𝐴2 = 𝛾𝑥𝐷2 + 2𝛼𝑥𝐷𝐷′ + 𝛽𝑥𝐷′2
𝑢2

𝐸0
2



Quantum Fluctuations in Horizontal Motion

We recall the definition of the chromatic (dispersion) invariant is

𝐻𝑥 = 𝛾𝑥𝐷2 + 2𝛼𝑥𝐷𝐷′ + 𝛽𝑥𝐷′2

So the change in the invariant for an electron with coordinates (𝑥, 𝑥′) due to the emission 
of a single photon of energy 𝑢 is simply

𝛿𝐴2 = 𝐻𝑥

𝑢2

𝐸0
2

We now proceed as for the energy oscillations by averaging over all photon energies, all 
betatron phases and all positions in the ring. From this, we obtain an average rate of 
change of the invariant of 

𝑑 𝐴2

𝑑𝑡
= −

2 𝐴2

𝜏𝑥
+

𝐻𝑥𝑁𝛾 𝑢2

𝐸0
2

The first term is the continuous damping due to the radiation already studied, and the 
second term represents quantum excitations or fluctuations around the average.



Quantum Fluctuations in Horizontal Motion

At equilibrium, the average rate of change in the invariant is zero. Assuming sinusoidal 
motion (𝑥 = 𝐴 sin(𝜙 𝑠 + 𝜙0)), the mean-square amplitude is 

𝐴2

2
=

𝜏𝑥 𝐻𝑥𝑁𝛾 𝑢2

4𝐸0
2

By analogy with the longitudinal plane, and substituting for the previously defined values 
of 𝜏𝑥, 𝑁𝛾 and 𝑢2  we can define the equilibrium value for the horizontal beam emittance 

as

𝜀𝑥 =
𝐴2

2
=

55

32 3

ℏ

𝑚𝑒𝑐
𝛾2

𝐼5

𝐽𝑥𝐼2

The equilibrium emittance is defined by the beam energy alongside the properties of the 
radiation integrals in the bending magnets (i.e. the bend radius, dispersion, beta-functions 
and dipole gradient).



Quantum Fluctuations in Horizontal Motion

In phase space at location 𝑠, particles with the equilibrium value of the invariant will sit on 
an ellipse 

𝜀𝑥 = 𝛾𝑥𝑥2 + 2𝛼𝑥𝑥𝑥′ + 𝛽𝑥𝑥′2

The particle density is Gaussian in both 𝑥 and 𝑥′, and the ellipse with amplitude ε𝑥 defines 
the 1-𝜎 contour. From the properties of the ellipse, we therefore have 

𝜎𝑥 = 𝛽𝑥𝜀𝑥

𝜎𝑥
′ = 𝛾𝑥𝜀𝑥

So although the emittance is constant around the ring, the beam size and divergence scale 
with 𝛽𝑥 and 𝛾𝑥 respectively.

In fact, the horizontal beam size will also have contributions coming from the energy 
oscillations at locations where the dispersion is non-zero. Since these occur at different 
frequencies and are uncorrelated, the contributions will add in quadrature

𝜎𝑥 = 𝛽𝑥𝜀𝑥 + 𝐷2𝜎𝜖
2

𝜎𝑥
′ = 𝛾𝑥𝜀𝑥 + 𝐷′2𝜎𝜖

2



Quantum Fluctuations in Vertical Motion

For an ideal storage ring, the absence of vertical bending magnets means the vertical 
dispersion is zero. As such, we should expect from the previous analysis that there is no 
quantum excitation in the vertical plane and that the vertical emittance should damp to 
zero. However, the assumption that the photon is emitted exactly parallel to the electron’s 
direction of motion is not quite correct.

If a photon is emitted at an angle 𝜃𝑦 to the electron path, then via the conservation of 

momentum the electron will recoil in the opposite direction. We have

𝑝𝑦,𝛾 = −𝑝𝑦,𝑒−

𝜃𝑦

𝑢

𝑐
= 𝛿𝑦′

𝐸0

𝑐

So

𝛿𝑦′ = 𝜃𝑦

𝑢

𝐸0

𝛾

𝑒−

𝑝𝛾

𝑝𝑒−  𝛿𝑦′𝜃𝑦 



Quantum Fluctuations in Vertical Motion

Assuming that the electron position remains unchanged (i.e. 𝛿𝑦 = 0), we have for the 
change in the Courant Snyder Invariant

𝛿𝐴2 = 𝛽𝑦𝜃𝑦
2

𝑢2

𝐸0
2

And we can proceed as for the horizontal plane by averaging over all photon emission 
energies, over all betatron phases and around the ring to obtain a rate of change of the 
vertical invariant (including the radiation damping term) of

𝑑 𝐴2

𝑑𝑡
= −

2 𝐴2

𝜏𝑦
+

𝛽𝑦𝑁𝛾 𝜃𝑦
2𝑢2

𝐸0
2

To continue, we make the approximation that 𝜃𝑦
2𝑢2 ≈ 𝜃𝑦

2 𝑢2  and that the mean-

square angle of emission is 𝜃𝑦
2 ≈ 1/2𝛾2. At equilibrium, we therefore have the result

𝜀𝑦 =
𝐴2

2
=

55

64 3

ℏ

𝑚𝑒𝑐

ׯ 𝛽𝑦/𝜌3 𝑑𝑠

𝐽𝑦𝐼2

In comparison to the horizontal plane, the explicit dependence of 𝜀𝑦  on 𝛾2 has gone, 

making the natural vertical emittance very small indeed.



Vertical Emittance from Error Sources

Because the natural emittance in the vertical plane is very small, the dominant effects tend 
to come from spurious error sources. These include:

• Vertical dispersion in the bending magnets, driven by tilted magnets or orbit errors in 
the quadrupoles and sextupoles

• Coupling of the horizontal motion into the vertical plane, again driven by tilted magnets 
or orbit errors in the sextupoles

In order to study these effects it is necessary to either have a detailed model of the 
accelerator in question including all error sources, or to perform a statistical analysis on 
the likely field and alignment errors. The vertical emittance is frequently given in terms of a 
coupling coefficient 𝜒, such that the sum of the horizontal and vertical emittances is 
constant:

𝜀𝑥 =
1

1 + 𝜒
𝜀𝑥0

 𝜀𝑦 =
𝜒

1 + 𝜒
𝜀𝑥0

By analogy with the horizontal plane, the vertical beam size and divergence are

𝜎𝑦(𝑠) = 𝛽𝑦(𝑠)𝜀𝑦  𝜎𝑦
′ (𝑠) = 𝛾𝑦(𝑠)𝜀𝑦



Summary of Quantum Excitation Effects

The combination of radiation damping and excitation leads to the equilibrium properties in 
each plane:

𝜎𝜖
2 =

55

32 3

ℏ

𝑚𝑒𝑐
𝛾2

𝐼3

𝐽𝜖𝐼2

𝜀𝑥 =
55

32 3

ℏ

𝑚𝑒𝑐
𝛾2

𝐼5

𝐽𝑥𝐼2

𝜀𝑦 =
55

64 3

ℏ

𝑚𝑒𝑐

ׯ 𝛽𝑦/𝜌3 𝑑𝑠

𝐽𝑦𝐼2

These parameters are independent of position around the ring, and can be used to 
determine local properties such as transverse beam size and divergence and the bunch 
length.

Due to the emission of synchrotron radiation, any electron bunch injected into a storage 
ring will damp to these equilibrium conditions, irrespective of their initial values.



Quantum lifetime

Neglecting collective effects, the equilibrium distribution for circulating electron bunches 
tends to a Gaussian in all 3 planes. As such, we can anticipate that the continual quantum 
excitation will lead to particles in the tails of the distribution have large position and energy 
deviations from the reference values which could be lost over time.

In the horizontal plane, the physical restriction imposed by the vacuum chamber places an 
upper limit on the oscillation amplitude. In the longitudinal plane, the height of the RF 
bucket limits the maximum energy deviation.

Beam envelope
Physical aperture

RF bucket height



Quantum lifetime

There will be a continual exponential decay in the beam current due to particles lost in this 
way. We can define a ‘quantum lifetime’ for both the horizontal and longitudinal planes. In 
each case, the quantum lifetime is defined by

1

𝜏𝑞
= −

1

𝑁

𝑑𝑁

𝑑𝑡

In the horizontal plane we have the scaled limiting amplitude 𝜉𝑥 and quantum lifetime 𝜏𝑞,𝑥

𝜉𝑥 =
𝑥𝑚𝑎𝑥

2

2𝜎𝑥
2  𝜏𝑞,𝑥 =

𝜏𝑥

2

exp(𝜉𝑥)

𝜉𝑥

And in the longitudinal plane we have

𝜉𝜖 =
𝜖𝑚𝑎𝑥

2

2𝜎𝐸
2  𝜏𝑞,𝜖 =

𝜏𝜖

2

exp(𝜉𝜖)

𝜉𝜖

In practice, for modern light sources these lifetimes tend to be very large and the actual 
lifetime is dominated by other processes. For example, assuming a 10 mm vacuum pipe, 
𝜀𝑥 ≈ 1 nm.rad, 𝛽𝑥 ≈ 10 m and 𝜏𝑥 ≈ 10 ms, the scaled amplitude 𝜉𝑥 is ~5000.



Flux and Brightness

Spectral Flux (Φ): number of photons emitted per unit time, per unit bandwidth
Spectral Brightness (ℬ): spectral flux, per unit source area, per unit solid angle

ℬ 𝜆 =
Φ 𝜆

4𝜋2Σ𝑥Σ𝑥′Σ𝑦Σ𝑦′

The effective source dimensions are a convolution between the electron beam size and 
the intrinsic photon dimensions: 

Σ𝑧 = 𝜎𝑧,𝑒
2 + 𝜎𝛾,𝑒

2

Σ𝑧′ = 𝜎𝑧′,𝑒
2 + 𝜎𝛾′,𝑒

2

The majority of new storage ring 
designs aim to increase the photon 
beam brightness by reducing the 
dimensions of the source.



Diffraction-limited storage rings

Goal for future storage rings is to approach ‘the diffraction limit’, i.e. to reduce the 
electron beam size below the intrinsic size of the radiation 

Existing rings already operate close to the diffraction limit in the vertical plane. The 
challenge is to reduce the horizontal beam size / divergence.

Electron emittance, ε = 1 nm.rad
Beta,  β = 1 m
Wavelength, λ = 1 nm
Undulator length, L = 2 m

Electron emittance, ε = 0.01 nm.rad
Beta,  β = 1 m
Wavelength, λ = 1 nm
Undulator length, L = 2 m



Low emittance rings

Reduction of the equilibrium (natural) emittance is one of the main goals in storage or 
damping ring design:

Storage rings

• Small emittance means the electron beam size and divergence is small, increasing the 
brightness of the photon beams

• Brighter photon beams implies increased photon flux through small beamline apertures
• Smaller electron beam sizes increases the transverse coherence of the photon beams
• Reducing the electron beam size and divergence reduces the spot size of the photon 

beam on the sample, reducing backgrounds when studying small samples and 
improving the spatial resolution when scanning

Damping Rings

• Used as temporary storage rings in colliders as a way of reducing an initial beam 
emittance via radiation damping

• The smaller extracted beam emittance reduces the bunch dimensions, increasing the 
final luminosity of the machine



Theoretical Minimum Emittance

The equilibrium emittance is given by 

𝜀𝑥 =
55

32 3

ℏ

𝑚𝑒𝑐
𝛾2

ׯ 𝐻𝑥(𝑠)/𝜌3(𝑠)𝑑𝑠

𝐽𝑥 ׯ 1/𝜌2 𝑠 𝑑𝑠
= 𝐶𝑞𝛾2

𝐼5

𝐽𝑥𝐼2

So assuming 𝐽𝑥 and 𝜌(𝑠) are constant, the emittance can be minimised by reducing 𝐻𝑥 𝑠  
in the bending magnets. This means that the dispersion function should be reduced, and 
the Twiss values optimised.

In order to minimise the emittance, we wish to minimise the integral

𝐼 = න
0

𝐿

𝛾𝐷2 + 2𝛼𝐷𝐷′ + 𝛽𝐷′2 𝑑𝑠

where 𝐿 is the length of the dipole and the subscript 𝑥 and explicit 𝑠-dependence have 
been dropped for convenience. Once the lattice parameters at the entrance to the magnet 
are defined, calculation of the integral can be carried out using standard formulae for the 
propagation through a dipole. The exercise here is to find the Twiss and dispersion values 
that minimise the integral, given certain constraints. 



Theoretical Minimum Emittance

Two cases are considered: non-achromatic (left) and achromatic (right) optics

𝛽𝑥 𝛽𝑥

𝐷𝑥

𝐷𝑥
𝐿𝐷 𝑠𝑓

At the waist:

𝛽𝑐 =
𝐿𝐷

2 15
 𝐷𝑐 =

𝐿𝐷
2

24𝜌

Minimum Emittance:

𝜀𝑥 =
1

12 15

𝐶𝑞𝛾2

𝐽𝑥
𝜃𝐷

3

At the dipole entrance:

𝛽0 = 2𝐿𝐷

3

5
 𝛼0 = 15  𝑠𝑓 =

3𝐿𝐷

8

Minimum Emittance:

𝜀𝑥 =
1

4 15

𝐶𝑞𝛾2

𝐽𝑥
𝜃𝐷

3



Low emittance rings

For light sources, the storage ring design has to provide straight sections (insertions) where 
the undulators / wigglers can be located, as well as deliver a low emittance.

A good figure-of-merit in this regard is the ratio between the total length of the straights to 
the overall circumference.

Although having the dispersion at a waist in the centre of the bending magnet leads to a 
lower emittance than matching it to zero at the edges, there are many reasons why the 
achromatic solution is desirable:

• It avoids increasing the horizontal beam size due to the energy spread
• Beam energy fluctuations do not translate to position offsets in the straights
• Provides a good location for the RF cavities and injection elements
• Decouples the chromatic and harmonic sextupoles

However, many rings choose to operate with a small amount of dispersion in the straights, 
as the emittance can be reduced without excessive impact on the other constraints.



Double Bend Achromat (DBA) cells

achromatic

low emittance

Many third-generation light sources use a 
double-bend achromat structure:

ELETTRA (Italy)
APS (USA)
SPRING8 (Japan)
BESSY-II (Germany)
Diamond (UK)
SSRF (China)
…

Cells of magnets are interspersed with the 
straight sections that house the insertion 
devices

There are two dipoles in each cell, with the 
dispersion and beta functions resembling 
the achromatic TME solution. Realistic 
designs tend to operate at slightly above 
the TME. 



Triple Bend Achromat (TBA) cells

Another common solution is the triple-
bend achromat:

ALS (USA)
SLS (Switzerland)
PLS (Korea)
TLS (Taiwan)
…

This design consists of three dipoles per 
cell. In this case, the outer dipoles are 
tuned to the achromatic TME solution, and 
the optics in the central dipole have a waist 
in the middle to lower the emittance. 

𝜀𝑀𝐸,𝑇𝐵𝐴 ≈ 0.3 × 𝜀𝑀𝐸,𝐷𝐵𝐴

ALS

PLS



Multi Bend Achromat (MBA) cells

The latest generation of electron storage 
rings make use of the scaling of the 
emittance with the number of bending 
magnets (bend angle)

𝜀𝑥 = 𝐹
𝐶𝑞𝛾2

𝐽𝑥
𝜃𝐷

3 ∝
1

𝑁𝐷
3

The MAX-IV storage ring in Sweden was the 
first to be built along these principles. 
Many new and existing facilities are 
working on designs that follow this basic 
principle. 

5BA

M-H6BA



Emittance reduction: transverse gradient bends

Rather than trying to minimise the emittance through a reduction in 𝐻𝑥 in the bending 
magnets (i.e. to minimise the 𝐼5 synchrotron radiation integral), the emittance can also be 
reduced by transferring part of the damping from the longitudinal plane into the horizontal 
plane. This can be achieved by adding a transverse gradient to the bending magnets.

𝐼4 = ර
𝜂𝑥 𝑠

𝜌 𝑠

1

𝜌2 𝑠
+ 2𝐾 𝑠 𝑑𝑠

Damping partition numbers:

𝐽𝑥 = 1 − 𝒟 𝐽𝑧 = 2 + 𝒟 𝒟 =
𝐼4

𝐼2

Emittance lowered by increasing 𝐽𝑥:

𝜖𝑥 = 𝐶𝑞𝛾2
𝐼5

𝐽𝑥𝐼2

Energy spread increases:

𝜎𝐸
2 = 𝐶𝑞𝛾2

𝐼3

𝐽𝑧𝐼2

For stable motion in both planes:

𝐽𝑥, 𝐽𝑧 > 0 − 2 < 𝒟 < 1 



Emittance reduction: longitudinally-varying bends

Another way to reduce the emittance is by varying the B-field within the dipole, such that 
the deflection is maximised at the location where the dispersion is smallest

Emittance lowered by minimising 𝐼5:

𝜖𝑥 = 𝐶𝑞𝛾2
𝐼5

𝐽𝑥𝐼2
 𝐼5 = ර

𝐻𝑥 𝑠

𝜌3 𝑠
𝑑𝑠 𝐻𝑥 𝑠 = 𝛾𝑥𝐷𝑥

2 + 2𝛼𝑥𝐷𝑥𝐷𝑥
′ + 𝛽𝑥𝐷𝑥

′2

• Total bend angle is kept constant
• Can get below TME of uniform dipole
• Have the benefit of producing hard x-rays where B-field is large



Emittance reduction: reverse bends

Rather than having all bending magnets deflect the beam in the same direction, some 
storage ring designs include weak dipoles of the opposite polarity. These provide an 
additional handle with which to control the dispersion function.

• Beta-functions largely unchanged
• Disentangle dispersion from beta-

function, allowing the TME to be 
reached with moderate phase 
advance

• Located at large 𝐻𝑥 𝑠 , so also 
contribute to εx and σE 

• Lead to very small or even negative 
momentum compaction factor

This technique is being exploited by 
the SLS-2, APS-U and Diamond-II 
upgrade project (amongst others)

without RB

with RB

main bend reverse bend



Summary

The emission of synchrotron radiation occurs in discrete quanta (photons), the emission 
time and energy of which are random and statistically independent

Emission of photons introduce a source of ‘noise’ in the electron energy and trajectory, 
causing the oscillation amplitudes to grow over time

When combined with the radiation damping, the quantum excitation process leads to an 
equilibrium distribution, defining a ‘natural’ emittance and energy spread and fixing the 
bunch lengths and (local) beam size around the ring

The excitation process leads to the loss of particles from the tails of the distribution over 
time via so-called quantum lifetime effects. However, this mechanism is relatively weak 
when compared with other lifetime effects

The emittance is a key parameter in the performance of a synchrotron light source. Great 
care is taken in the design of these machines in order to lower the emittance

The theoretical minimum emittance of a ring with uniform bending magnets scales with 
the square of the energy and the inverse cube of the number of bending magnets
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