ISR Stau Signal Processing

$$m(\chi_1^{\pm}) = 300, \Delta m(\chi_1^{\pm}, \chi_1^0) = 50 \ GeV$$

• Apparent lower yields than SUS-19-002

SUS-19-002

Current Iteration

	2016	
m_T	$m_{\tilde{\chi}^{\pm}} = 300$	
0-10	18 ± 1	
10-20	20 ± 1	
20-30	17 ± 1	
30-40	20 ± 1	
40-50	18 ± 1	
50-60	17 ± 1	
60-70	14 ± 1	
70-80	14 ± 1	
80-90	11 ± 1	
00-100	13 ± 1	
00-110	12 ± 1	
10-120	11 ± 1	
20-140	19 ± 1	
40-160	19 ± 1	
60-180	12 ± 1	
80-200	7 ± 1	
200+	6 ± 1	

2017			
)		$m_{\tilde{\chi}_{1}^{\pm}} = 300$	
		20 ± 4	
		26 ± 4	
		21 ± 4	
		25 ± 4	
		22 ± 4	
		20 ± 4	
		18 ± 4	
		18 ± 4	
		14 ± 3	
		18 ± 3	
		14 ± 3	
		13 ± 3	
		23 ± 4	
		22 ± 3	
		15 ± 3	
		8 ± 2	
		7 ± 2	

2016	2017	2018
Bin 1: 5.92402	7.14191	9.84221
Bin 2: 5.61847	6.77353	9.33456
Bin 3: 5.7408	6.92101	9.5378
Bin 4: 5.44328	6.56233	9.0435
Bin 5: 6.02979	7.26941	10.0179
Bin 6: 5.48896	6.61741	9.1194
Bin 7: 4.82421	5.81599	8.01498
Bin 8: 4.50495	5.4311	7.48455
Bin 9: 4.14655	4.99901	6.8891
Bin 10: 4.17837	5.03738	6.94198
Bin 11: 3.86747	4.66256	6.42544
Bin 12: 3.3605	4.05137	5.58316
Bin 13: 6.54333	7.88854	10.8711
Bin 14: 5.82534	7.02294	9.67826
Bin 15: 4.44466	5.35841	7.38438
Bin 16: 2.23713	2.69705	3.71679
Bin 17: 1.38859	1.67407	2.30702
Bin 18: 0.521373	0.628559	0.866212
Bin 19: 0.238061	0.287003	0.395516
Bin 20: 0.116931	0.14097	0.19427

• Efficiencies seem lower than SUS-19-002

	$\Delta mig(\chi_1^\pm,\chi_1^0ig)=50~GeV$	$\Delta mig(\chi_1^\pm,\chi_1^0ig)=100~GeV$
2016	$\varepsilon = 1.7\%$	$\varepsilon = 1.5\%$
2017	$\varepsilon = 1.8\%$	$\varepsilon = 1.5\%$
2018	$\varepsilon = 1.7\%$	$\varepsilon = 1.5\%$

SUS-19-002 →

• We are adding across years of raw MC events per mass/ Δm to increase stats, then normalize to corresponding $\varepsilon, \sigma, \mathcal{L}$.

double lumi2016 = 36.33; double lumi2017 = 41.480; double lumi2018 = 59.830;

double xSec = 129.9;

// vector of charginol masses (n1 = c2 here)
Double_t Graph0_fx1007[5] = {
100,
200,
300,
400,
500};
// cross section in femtobarn
Double_t Graph0_fy1007[5] = {
3913.17,
558.28,
129.9,
48.4118,

TFile *f1 = new TFile("ISR_stau_2016_signalYields/ISR_SUS_2016_mC1_300_dm_50_finalBinning.root"); TH1D *TauMetMtBase = TaulMetMt; TH1D *EventsCp16 = Events; TFile *f2 = new TFile("ISR_stau_2017_signalYields/ISR_SUS_2017_mC1_300_dm_50_finalBinning.root"); TH1D *TauMetMt17 = TaulMetMt; TH1D *EventsCp17 = Events; TFile *f3 = new TFile("ISR_stau_2018_signalYields/ISR_SUS_2018_mC1_300_dm_50_finalBinning.root"); TH1D *TauMetMt18 = TaulMetMt; TH1D *EventsCp18 = Events;

20.12;

Code to calculate efficiencies, extract and scale histograms:

```
TFile *f1 = new TFile("ISR_stau_2016_signalYields/ISR_SUS_2016_mC1_300_dm_50_finalBinning.root");
TH1D *TauMetMtBase = TaulMetMt;
TH1D *EventsCp16 = Events;
TFile *f2 = new TFile("ISR_stau_2017_signalYields/ISR_SUS_2017_mC1_300_dm_50_finalBinning.root");
TH1D *TauMetMt17 = TaulMetMt;
TH1D *EventsCp17 = Events;
TFile *f3 = new TFile("ISR_stau_2018_signalYields/ISR_SUS_2018_mC1_300_dm_50_finalBinning.root");
TH1D *TauMetMt18 = TaulMetMt;
TH1D *TauMetMt18 = TaulMetMt;
TH1D *EventsCp18 = Events;
TauMetMtBase->Add(TauMetMt17);
TauMetMtBase->Add(TauMetMt17);
TauMetMtBase->Add(TauMetMt18);
//for dm=50
double eff16 = EventsCp16->GetBinContent(2)/103373.62;
double eff17 = EventsCp18->GetBinContent(2)/93484.64;
```

- Samples contain mix of mass/Δm events, so *Events* histo. bin 1 is not reflective of the number of the number of events "processed" we use in efficiency denominator.
- Instead, we use Events histo. bin 2 from NRecoVertex cut level as denominator.

```
TH1D *TauMetMt2018 = (TH1D*)TauMetMtBase->Clone();
TauMetMt2018->Scale((eff18 * lumi2018 * xSec)/TauMetMt2018->Integral(1,21));
TH1D *TauMetMt2017 = (TH1D*)TauMetMtBase->Clone();
TauMetMt2017->Scale((eff17 * lumi2017 * xSec)/TauMetMt2017->Integral(1,21));
TH1D *TauMetMt2016 = (TH1D*)TauMetMtBase->Clone();
TauMetMt2016->Scale((eff16 * lumi2016 * xSec)/TauMetMt2016->Integral(1,21));
```

Full Status Report on 9/20

- Aside from general comments, the main point of discussion may be the ongoing conversation about the simultaneous fit vs. scale factor background estimation method:
 - I will upload the cards (and AN) today, as the conveners have requested.
- Other points of discussion per most recent convener email:
 - "Please document how you apply the btag scale factors (mention the method from BTV and include efficiency maps if relevant)"
 - We currently use "Event Reweighting Using Scale Factors Only" from the BTV POG Twiki at [1]
 - It seems this is not one of the recommended approaches
 - Should be acceptable given that we only apply a b-jet veto with very efficiencies, though we will have to make this case.
- Expected limits:
 - Though the cards are in place, the issues mentioned previously may need more studies.
 - Additional question: Usage of combineCards.py for a large number of cards?

[1]:https://twiki.cern.ch/twiki/bin/view/CMS/BTagSFMethods