FCC project in Italy

2nd FCC Italy & France workshop November 4, 2024

Paolo Giacomelli INFN Bologna

Italy has been involved from the very beginning on FCC

Italy has been involved from the very beginning on FCC The main goals for FCC (and PED) will be described by Gregorio

- Italy has been involved from the very beginning on FCC
 - The main goals for FCC (and PED) will be described by Gregorio
 - Italian Accelerator activities will be covered by Manuela

- Italy has been involved from the very beginning on FCC
 - The main goals for FCC (and PED) will be described by Gregorio
 - Italian Accelerator activities will be covered by Manuela
 - I will concentrate on PED activities

- Italy has been involved from the very beginning on FCC
 - The main goals for FCC (and PED) will be described by Gregorio
 - Italian Accelerator activities will be covered by Manuela
 - I will concentrate on PED activities
 - I will focus mostly on the IDEA detector concept and its sub-detectors

- Italy has been involved from the very beginning on FCC
 - The main goals for FCC (and PED) will be described by Gregorio
 - Italian Accelerator activities will be covered by Manuela
 - I will concentrate on PED activities
 - I will focus mostly on the IDEA detector concept and its sub-detectors
 - We are also very active on physics studies and these will be discussed in several talks at this workshop

- Italy has been involved from the very beginning on FCC
 - The main goals for FCC (and PED) will be described by Gregorio
 - Italian Accelerator activities will be covered by Manuela
 - I will concentrate on PED activities
 - I will focus mostly on the IDEA detector concept and its sub-detectors
 - We are also very active on physics studies and these will be discussed in several talks at this workshop
 - We are actively seeking to develop synergies and collaborate with many International colleagues

- Italy has been involved from the very beginning on FCC
 - The main goals for FCC (and PED) will be described by Gregorio
 - Italian Accelerator activities will be covered by Manuela
 - I will concentrate on PED activities
 - I will focus mostly on the IDEA detector concept and its sub-detectors
 - We are also very active on physics studies and these will be discussed in several talks at this workshop
 - We are actively seeking to develop synergies and collaborate with many International colleagues
 - At this workshop we hope to initiate and foster many collaborations with French colleagues on several activities

The IDEA detector concept for FCC-ee

Innovative Detector for e+e- Accelerator

FCC project in Italy - Paolo Giacomelli

- New, innovative, possibly more costeffective concept
 - □ Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
 - Thin and light solenoid coil inside
 - calorimeter system
 - Small magnet \Rightarrow small yoke
 - \Box Muon system made of 3 layers of μ -RWELL detectors in the return yoke

https://pos.sissa.it/390/

DR Crystal Calo Silicon Wrapper 2.0

Vertex Detector

Beam pipe: R~1.0 cm

DR Crystal Calo Silicon Wrapper 2.0

Vertex Detector

Beam pipe: R~1.0 cm

Vertex:

5 MAPS layers

R = 1.37-31.5 cm

Drift Chamber: 112 layers

4 m long, R = 35-200 cm

DR Crystal Calo Silicon Wrapper 2.0

Vertex Detector

04/11/2024

Beam pipe: R~1.0 cm

Vertex:

- 5 MAPS layers
- R = 1.37-31.5 cm

Drift Chamber: 112 layers

4 m long, R = 35-200 cm

Outer Silicon wrapper:

R = 200-215 cm

DR Crystal Calo Silicon Wrapper 2.

Vertex Detector

04/11/2024

Beam pipe: R~1.0 cm

Vertex:

5 MAPS layers	
R = 1.37-31.5 cm	

Drift Chamber: 112 layers

4 m long, R = 35-200 cm

Outer Silicon wrapper:

R = 200-215 cm

DR crystal ecal: $\sim 22 X_0$

R = 215-250 cm

DR Crystal Calo

Vertex Detector

Beam pipe: R~1.0 cm	
Vertex:	
5 MAPS layers	Muon chan
R = 1.37-31.5 cm	Return y
Drift Chamber: 112 layers	
4 m long, R = 35-200 cm	DR Fiber
Outer Silicon wrapper : R = 200-215 cm	
DR crystal ecal : $\sim 22 X_0$	DR Crysta
R = 215-250 cm	Silicon Wra
Superconducting solenoid coil:	
3 T , R ∼ 2.5-2.8 m	Drift Cha

Vertex Detector

Beam pipe: R~1.0 cm

Vertex:

5 MAPS layers

R = 1.37-31.5 cm

Muon chambers

Drift Chamber: 112 layers

4 m long, R = 35-200 cm

Outer Silicon wrapper:

R = 200-215 cm

DR crystal ecal: $\sim 22 X_0$

R = 215-250 cm

Superconducting solenoid coil:

3 T, R ~ 2.5-2.8 m

Dual-Readout Calorimeter:

R = 280-460 cm

DR Crystal Calo Silicon Wrapper 2.

Vertex Detector

04/11/2024

Beam pipe: R~1.0 cm	
Vertex:	
5 MAPS layers	Muon chaml
R = 1.37-31.5 cm	Return yo
Drift Chamber: 112 layers	
4 m long, R = 35-200 cm	
	DR Fiber (
Outer Silicon wrapper:	
R = 200-215 cm	
DR crystal ecal: ~ 22 X ₀	DR Crystal
R = 215-250 cm	Silicon Wra
Superconducting solenoid coil:	
3 T, R ~ 2.5-2.8 m	Drift Cham
Dual-Readout Calorimeter:	
R = 280-460 cm	Vertex Dete
Yoke + Muon chambers	
R = 460-570 cm	

04/11/2024

IDEA MDI

Ref: M. Boscolo, F. Palla, et al., Mechanical model for the FCC-ee MDI, EPJ+ Techn. and Instr., https://doi.org/10.1140/epjti/s40485-023-00103-7

04/11/2024

IR mockup

IR mockup

The mockup project has received a great deal of interest within the FCC community

- primarily for technology validation of the MDI design for • the Feasibility Study
- Integrating vertex and chambers "on paper" has been • proven to be difficult, more surprises expected with a real mock-up!
- **Global assembly sequence to be studied** •

Main components

- Central vacuum chamber with paraffin cooling system \checkmark
- Lateral vacuum chamber with water cooling system \checkmark
- **IR Bellows**
- Support tube carbon fibre + honeycomb ۲
- Inner vertex detector with air cooling system + outer tracker and services routings
- Luminosity calorimeter and services routings ٠

Goal is to prove state-of-the-art technological solutions and test its feasibility LNF, CERN and INFN-Pisa collaboration (LNF-CERN MoU)

central region ± 1.2 m

New IDEA solenoid studies New proposal of INFN MI - LASA Study of an HTS solenoid for IDEA

Detector magnets are all based on aluminum-stabilized NbTi: but:

NO Commercially available nowadays

- Need of re-establishing conductor technology in industry
- **Required low temperature operation (< 5 K)**
 - Large energy consumption (cost and not sustainable)
 - Large inventory of LHe (scarcity of He and no sustainable)

"NEED OF NEW CONCEPTS OF DETECTOR MAGNETS"

Property	IDEA	CLD	Unit		
	Conductor				
Conductor material	Nb-Ti/Cu i				
Conductor height	36	36	mm		
Conductor width	10	22	mm		
Turn-to-turn insulation	1	1	mm		
Number of strands	30	26			
Strand diameter		1.1	mm		
Cu:SC ratio	1: 1				
Operating current	20		kA		
Operating temperature		4.5	Κ		
	Coil				
Inner radius	2.235	4.02	m		
Length	5.8	7.2	m		
Weight	12.5	49.5	t		
Number of turns x layers	530 x 1	300 x 1			
Support cylinder thickness	12	25	mm		
Total coil thickness	53	102	mm		
Central field		2	Т		
Stored energy	170	600	MJ		
Energy density	14	12	kJ/kg		

Silicon tracker

04/11/2024

ARCADIA MD3 sensors test beam at FNAL (PD, BO, TO)

- 120 GeV protons from June 26th to July 10th
- Telescope with 3 ARCADIA-MD3 sensors
- Threshold, sensor HV and incidence angle parametrization:
 - study of cluster size, collection efficiency, spatial resolution

ATLASPIX3 Module at H8 beam line

(MI+Edinburgh+IHEP)

- Module inserted in the Hydra calorimeter test beam ulletAugust 28th – September 4th
- Testing the integration in a readout chain with other detectors

Drift chamber

Simulation studies: progress about the final design of the cross section of the spoke

- Including prestressing of spokes
- **Buckling** analysis on outer cylinder

Max deformation along the chamber axis $\sim 190 \ \mu m$

along z

simulation: deformation

Statical structural

Our main goal was to limit the deformation of the spokes to **200 µm** while ensuring the structural integrity.

FCC project in Italy - Paolo Giacomelli

10

Drift chamber

> New results from the 2021/2022 beam tests at CERN H8 (βγ > 400) [ICHEP 2024]

- > Landau distribution for the charge along a track
- \succ Selected the distribution with 80% of the charges for the dE/dx truncation to be compared with dN/dx. There is still margin for improvements in CC efficiency!
- \succ Data analysis of the two test beams at CERN T10 performed in July 2023 and July 2024 with muons (1-12 GeV) ongoing

Drift chamber

(Additional wrt RD_FCC) Funding

 \succ Eurizon (closed in January 2024), FEST to allow collaboration with IHEP

Effort to build a **international collaboration** enforced > well established collaboration with **IHEP** for NN-based cluster counting algorithms > started to collaborate with US colleagues from **BNL** (relevant contribution from them in July 2024 test beam!)

2025-2026 plans

- \succ Test beams: 2023-2024 test beam data analysis, 2025 test beam at FNAL-MT6 with π and K ($\beta\gamma$ = 10-140 \rightarrow important to fully exploit the relativitic rise.
- \succ DCH prototypes: activities to start the construction of a full-scale prototype \rightarrow to test the chamber mechanical and electrostatic stability (a clean room is needed for wiring!), and a small prototype \rightarrow to study the tracking performance full simulation (digi+ tracking algorithms) of the chamber

FCC project in Italy - Paolo Giacomelli

12

ECAL crystal calorimeter

Test beam at CERN (July 2024)

- Prepared and coordinated by Napoli (2 tecnici, 2 ricercatori, 3 PhD, 2 studenti) and MIB groups with participation from Perugia, US and CERN
- Tests with electrons (10-100 GeV), muons, hadrons
- Tested a variety of filters and crystals to assess Cherenkov yield as a function of beam angle
- Plenty of useful data to steer the next R&D steps and technological choices for the prototype construction \rightarrow analysis is in progress!

FCC project in Italy - Paolo Giacomelli

Experimental box from NA with rotating stage

CERN TB crew in H6 last week

ECAL crystal calorimeter

Preliminary results from test beam 13x13x150 mm³ PWO with dual SiPM readout on rear side

14

ECAL crystal calorimeter

Towards a multi-channel prototype (2025-2026)

- 2024 lab and beam test results will inform the choice of a baseline technology to **build** a full containment EM calorimeter prototype (~200 channels)
- Procurement of electronics for readout started, procurement of crystals and SiPMs in early 2025 (informed by test beam results in 2024)
- Test of the prototype on beam at DESY or CERN in the second half of 2025 (possibly joint test with HIDRA fiber calorimeter prototype to anticipate beam shortage from 2026)

Prototype readout schematics

DR calorimeter INFN

HiDRa construction on its way (~50%)

Testbeam 2024 - done

04/11/2024

FCC project in Italy - Paolo Giacomelli

$O(10 \ \mu m)$ precision on minimodule height (<u>calor2024</u>)

Excellent mechanical precision

Very preliminary linearity (after quite some troubles):

		-
		-
_		
_		
		+
_		+
_		
12	0	
16	6	

DR calorimeter: HiDRa layout

04/11/2024

10240 SiPMs fitting detector back side

FCC project in Italy - Paolo Giacomelli

17

μ**RWell**

The results of TB-22-23, where the 2D layouts have been compared, giving the following results: **2x1D layout**: spatial resolution < 200 μ m (pitch 0.8 mm), low voltage operating point ~520V, efficiency \geq 98% (large eff. plateau) **CS layout**: spatial resolution < 200 μ m (with pitch 1.2 mm), very high voltage operating point, \geq 600V, efficiency \geq 98% **Top layout**: spatial resolution < 200 μ m (pitch 0.8 mm), low voltage operating point ~520V, efficiency ~ 70% (dead-zone)

Detector solution & program 2025:

- **Hybrid CS with strip readout**→ CS + GEM pre-amplification stage, to lower the operating point, greatly improving the RWELL stability and maintaining high spatial performance with millimetric pitches
- **Micro-RGroove** \rightarrow new layout, where the amplification stage is not based on the **«wells» but on the «grooves».** This facilitates the realization of the strip readout on the top, without introducing deadzones (introduced by Z. Yi in RD51).

μ**RWell**

Simulation

FULL IDEA DD4HEP IMPLEMENTATION

- The simple Muon System and Pre-• shower have been included in the full IDEA DD4hep implementation.
- Current DR Calorimeter is still missed. A \bullet simple version has been implemented in order to study the **multiple scattering** of muons.

- The full implementation now is available on <u>k4qeo</u> • **READOUT SYSTEM**
- Description of the readout is made for every single ulletlayer represents the system (segmentation in ϕ and θ direction).
- Chamber represents the 50 * 50 cm² the μ RWELL •
- The sensitive layer is the gas layer. •

DIGITIZATION (ONGOING)

In order to convert the **SimHits** into **DigiHits**, some parameters have been implemented from the μ RWELL test beam results:

 μ RWELL efficiency: >95%., pre-shower candidate ulletspace resolution: ~ 100 μ m, muon system candidate space resolution: ~ 400 μ m 04/11/2024

Front-end Electronics

TIGER/GEMROC Front-end electronics

- Noise level very low (~1 fC)
- Input capacitance up to 100 pF
- TDC resolution < 50 ps
- Average gain ~ 10.75 mV/fc
- Maximum power consumption ~ 12 mW/ch

A TB has been performed @ SPS in July 2024. The data analysis of <u>HV</u> <u>scan</u>, <u>Drift scan</u> and <u>Thr. scan</u>, with Ar:CO₂:CF₄ is ongoing and will be finalized in the next month

Software & Computing

Software [BA, BO, PI, MIB, PD, PV, UD]

- Realization of the description of IDEA concept sub-detectors': silicon \bigcirc (vertex+wrapper), drift chamber, calorimeters (ECAL crystal + DR Calo), muon detector (and pre-shower) in DD4HEP
 - Geometry
 - Simulation & Beam background studies

Initial development of Local & global Reconstruction & Performance studies \rightarrow \bigcirc new track reconstruction effort is based on TFGG, a generalised geometric track finding approach to allow for more complex tracking detectors which involve multiple tracking technologies.

FCC project in Italy - Paolo Giacomelli

20

IDEA study group meetings

- IDEA has many activities as well as an extensive list of future plans
 - It becomes indispensable to have some regular meetings
 - Even more IMPORTANT to keep international colleagues informed
 - Propose to have monthly IDEA Study group meetings
 - Start in October
 - Invite
 - People who already collaborate with IDEA activities
 - People who expressed interest in collaborating with IDEA
 - Anybody who wants to be informed about IDEA activities and news
 - These meetings will be complementary to detector concepts meetings
 - Will regularly report to detector concepts meetings and PED
 - Are not proto-collaboration meetings

IDEA plans to prepare an Eol for each sub-detector:

IDEA plans to prepare an Eol for each sub-detector: • Vertex tracker

IDEA plans to prepare an Eol for each sub-detector:

- Vertex tracker
- Drift chamber

- IDEA plans to prepare an Eol for each sub-detector:
 - Vertex tracker
 - Drift chamber
 - Outer wrapper

- IDEA plans to prepare an Eol for each sub-detector:
 - Vertex tracker
 - Drift chamber
 - Outer wrapper
 - DR crystal ecal

- IDEA plans to prepare an Eol for each sub-detector:
 - Vertex tracker
 - Drift chamber
 - Outer wrapper
 - DR crystal ecal
 - Superconducting Solenoid

- IDEA plans to prepare an Eol for each sub-detector:
 - Vertex tracker
 - Drift chamber
 - Outer wrapper
 - DR crystal ecal
 - Superconducting Solenoid
 - DR fibre calorimeter

- IDEA plans to prepare an Eol for each sub-detector:
 - Vertex tracker
 - Drift chamber
 - Outer wrapper
 - DR crystal ecal
 - Superconducting Solenoid
 - DR fibre calorimeter
 - Muon detection system

- IDEA plans to prepare an Eol for each sub-detector:
 - Vertex tracker
 - Drift chamber
 - Outer wrapper
 - DR crystal ecal
 - Superconducting Solenoid
 - DR fibre calorimeter
 - Muon detection system
- An Eol of the IDEA detector concept

- IDEA plans to prepare an Eol for each sub-detector:
 - Vertex tracker
 - Drift chamber
 - Outer wrapper
 - DR crystal ecal
 - Superconducting Solenoid
 - DR fibre calorimeter
 - Muon detection system
- An Eol of the IDEA detector concept
 - the Eol(s) of their interest

<u>Strongly</u> encourage international collaborators to participate and sign

Backup

