

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

OVERVIEW OF FCC ACCELERATOR ACTIVITIES IN ITALY AND FRANCE

Manuela Boscolo (INFN-LNF)

Angeles Faus-Golfe(IN2P3) and Pierre Verrine (CEA)

2nd FCC Italy & France 2024 4 November 2024, Venice, Italy

2ND "FEE ITALY & FRANCE WORK

Introduction

FCC

- Highlights of accelerator activities for FCC at INFN, IN2P3, and CEA/IRFU.
- R&D programs are partially funded by national institutes and in collaboration with CERN through MoUs, EU-program FCCIS (Eurocircol), Swiss CHART program
- The R&D presented here is on-going, mainly focused on the preparation for the ESPPU, and will continue in the next years.
- If FCC will be approved these activities are likely to be strengthened and reinforced.

Main areas of Activities

FCC-ee MDI

FCC

- Mechanical model
- IR Mock-up
- Backgrounds, Beamstrahlung
- Alignment tolerances & vibration control

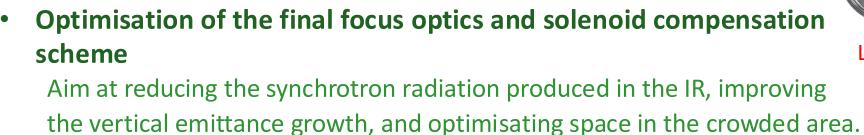
FCC-ee Collider Design

- Collective effects
- Monochromatization
- Polarimetry
- Beam-beam

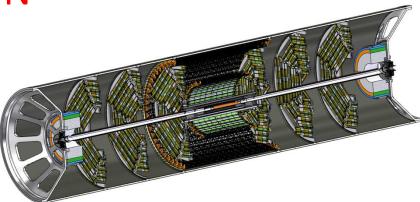
FCC-ee Booster Design

- Optics
- Beam dynamics

FCC-ee Injector

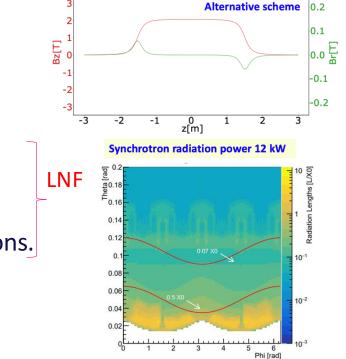

- e⁺ source and capture system
- e⁺ damping Ring

Technology R&D


- SRF cavities for FCC-ee
- Magnets for FCC-ee/hh

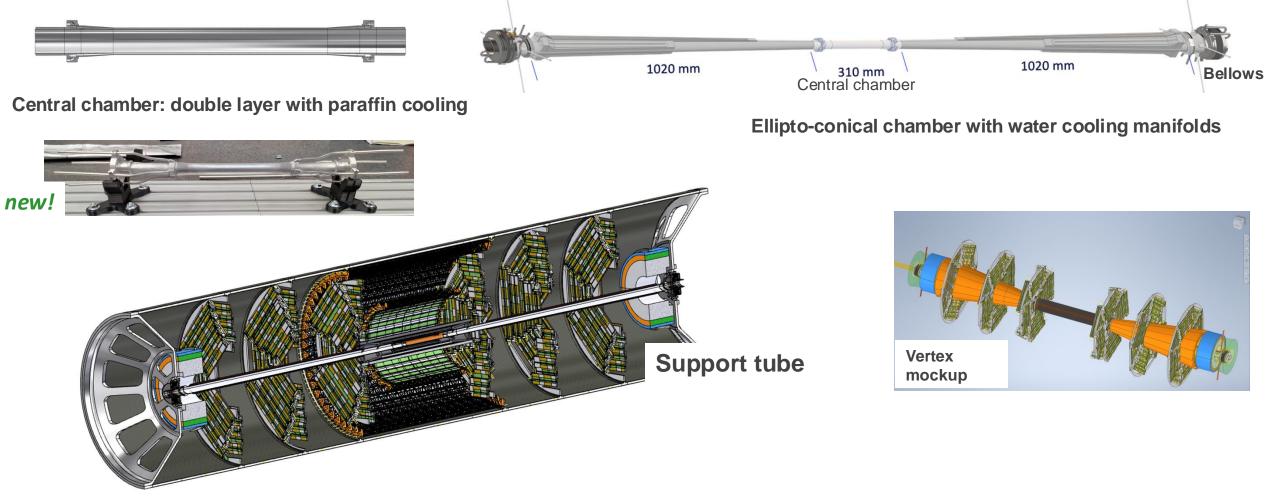
FCC-ee Machine detector interface (MDI) – INFN

Engineered design of the interaction region and its components
 Light and cooled beam pipes, vertex detector, luminosity calorimeter,
 bellows, services and routings.
 LNF, Pisa, Perugia



- Detector backgrounds evaluation, material budget optimisation.
- **Beamstrahlung** radiation dump and induced backgrounds.
- Collimation scheme with beam losses from halo beam, beam-gas, thermal photons.
- **3T solenoid design NEW** talk by S. Mariotto, MDI session

LNF


Milano

R&D Full scale IR mockup at LNF in collaboration with Pisa and CERN

Goal: design validation, buckling test, assembly and cooling/services test

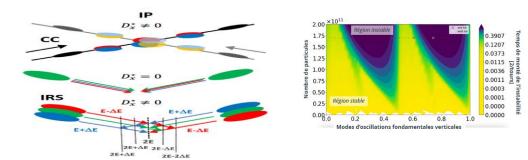
Integration and overall assembly targeting Q4-2025

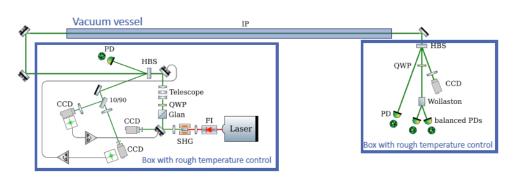
Collider design

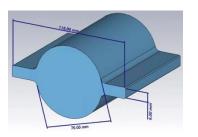
IN2P3

FCC

- Monochromatization optics
 - IR Optics with horizontal/vertical dispersion at IP $(D_{x,y}^{*,})$
 - Possible experimental tests at DAFNE/SuperKEKB/BEPCII
- Beam-Beam studies
 - including more precise wakefield model and possible experimental studies.
- Compton polarimetry
 - Laser system and pixelized detectors

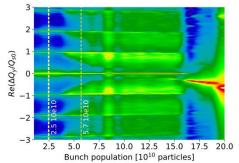



R&D on HTS IR quadrupole and its cooled beam pipe (emerging new studies)

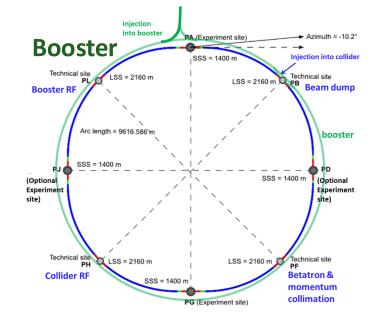

(see talk M. Merchand (LAPP), Acc-1 session)

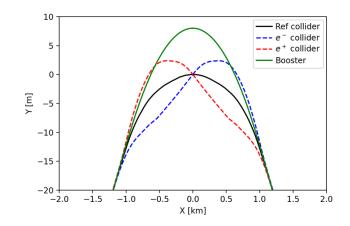
INFN-Roma1, LNF

- Collective effects, single bunch and multibunch instabilities
- Beam-beam and coupling impedance


7

Booster Design – CEA

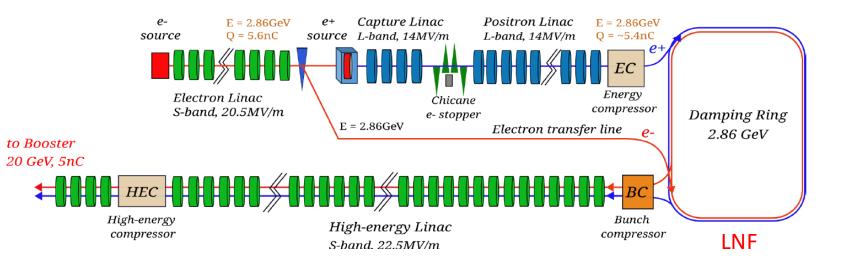

• Optics design


FCC

- Dynamic aperture
 - also with AI techniques
- Parameter table
- Tuning strategy
- Collective effects INFN-Roma1, LNF

Bunch population scan at injection energy

Running mode		Z	W	ZH	tī		
Injection option		LINAC/SPS					
Circumference	[km]	91.174					
Injection energy	[GeV]	20/16					
Extraction energy	[GeV]	45.6	80	120	182.5		
Number bunches / ring		11200	1780	440	60		
Maximum particle number / bunch $N\max$	[10 ¹⁰]	$\geq 2.5~(4~{\rm nC})$					
Particles / bunch in top-up	[10 ¹⁰]	2.14	0.87	0.69	0.93		
RF frequency	[MHZ]	800					
Arc optics FODO		60°/60°			90°/90°		
Momentum compaction		$14.9 \times$	10^{-6}	7.34×10^{-6}			
Coupling		2×10^{-3}					
Injection horizontal emittance (norm.)	[µm]	10/190					
Injection vertical emittance (norm.)	[µm]	10/4					
Extraction horizontal equilib- rium emittance (RMS)	[nm]	0.26	0.81	0.63	1.45		
Extraction vertical equilibrium emittance (RMS)	[pm]	0.53	1.62	1.25	2.90		


Mid-term parameter table

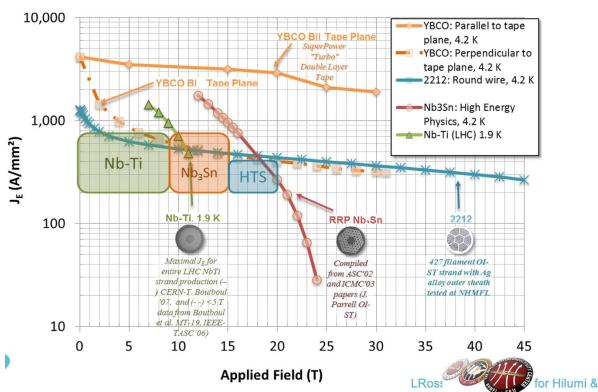
Extraction horizontal equilib- rium emittance (RMS)	[nm]	0.26	0.81	0.63	1.45	
Extraction vertical equilibrium emittance (RMS)	[pm]	0.53	1.62	1.25	2.90	
Injection Energy loss / turn	[MeV]	1.514/0.6203				
Extraction Energy loss / turn	[MeV]	40.93	387.7	1963	10500	
Injection bunch length	[mm]	4/5.5				
Extraction bunch length	[mm]	4.38	3.55	3.34	1.94	
Injection RMS energy spread	$[10^{-3}]$	1/4				
Extraction RMS energy spread	$[10^{-3}]$	0.38	0.67	1.01	1.53	
Injection Maximum relative energy acceptance	[%]	3				
Extraction Maximum relative energy acceptance	[%]	0.36	0.76	0.49	2.39	
Injection RF voltage	[MV]	104.9/82.97		52.85/41.36		
Extraction RF voltage	[MV]	49.48	458.6	2015	11533	
Filling time	[s]	28/31.5	8.9/9.6	4.4/4.75	0.6/0.95	
Ramp time	[s]	0.32/0.37	0.75/0.8	1.25/1.3	2.03/2.08	
Flat top	[s]	1.9	0	0	0	
Total cycling time	[s]	30.54/ 34.14	10.4/11.2	6.9/7.35	4.66/5.11	

Positron source and capture system – IJCLAB / INFN

 \rightarrow positron flux of ~1.35×10¹³ e⁺/s. Demonstrated at SLC (a world record for existing accelerators): ~6 ×10¹² e⁺/s

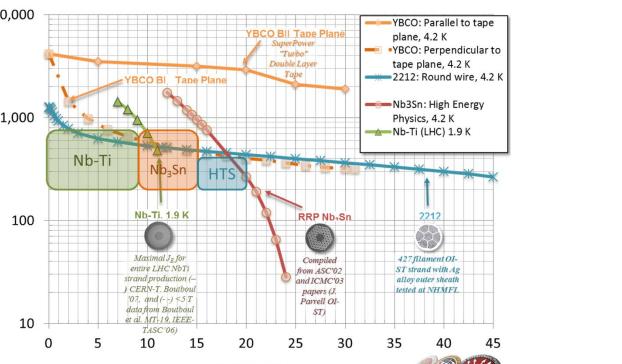
5.4 nC e+/bunch at the DR* \rightarrow 13.5 nC e+/bunch at the exit of the Positron Linac, considering 60% of losses due to transport, collimation and injection in the DR (safety margin of 2.5).

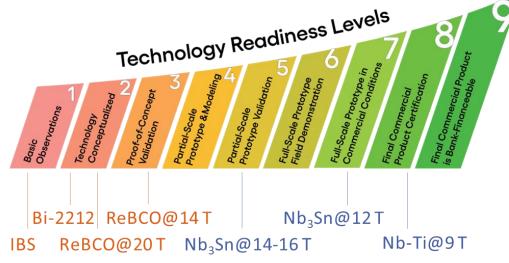
- Capture System and Positron Linac
 - HTS solenoid or flux concentrator IJCLab
 - Al techniques for beamline optimization INFN-Milano
- Crystal-based positron source INFN-Ferrara/IJCLab
- Use of AI for global optimization IJCLab

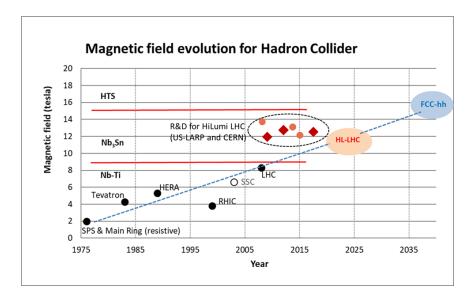


☐ FCC

9


High-field magnets for FCC-hh


Ultimate goal: 16 T – 20 T

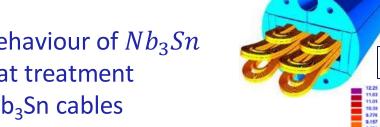


The Superconductor Parameter space

For FCC-hh the 14 T magnet target is realistic, can reach between 85-90 TeV, 15Y R&D + 15Y industrialization and production.

E. Todesco

FCC quadrupole


10

High-field magnets for FCC-hh


12 T Nb₃Sn Dipole Magnet

FCC

- Robust concepts using a partnership with industry INFN-Mi, INFN-Ge
- Technology developments in the lab CEA
 R&D activities:
 - Thermomechanical behaviour of Nb₃Sn conductors during heat treatment
 - Mechanical tests of Nb₃Sn cables

Ultimate goal: 16 T – 20 T

High Temperature Superconducting Magnets

- INFN strategy: PNNR_IRIS: development of a HTS (REBCO) dipole in the range 8-10 T
- **CEA** strategy : MI (Metal-Insulated) HTS tapes for very high current densities Relying on fast turn-over / reduced-risk subscales

11

Superconducting radio-frequency (SRF) cavities INFN/IN2P3

RF system R&D is key for increasing energy efficiency of FCC-ee

- Nb on Cu 400 MHz cavities
- Bulk Nb 800 MHz cavities, surface treatment techniques, cryomodule design
- **RF power source R&D** in synergy with HL-LHC

INFN-LNL R&D on surface polishing and SC film coating

INFN-Milano R&D on Nb bulk cavities:

- 1-cells 1.3 GHz: surface and thermal treatments development & qualification
- 9-cells 1.3 GHz: industrialization (9-cells) of the developed process
- New cryostat dedicated to R&D (Design specifically for TESLA type single- and multi-cell cavities)

IN2P3

FCC

- Multipacting modeling on the SRF SWELL cavities
- SRF High-Q & Thermolectrical (800 MHz & bimetal structures)

Slotted Waveguide Elliptical cavity (SWELL) Multipactor locations

FCC-JLAB prototype 800 MHz at IJCLab

Nb₃Sn coating by Physical Vapor Deposition (PVD) on a Quadrupole Resonator @20 mT @400 MHz @4.5K

Summary

FCC

- Many complementary and synergic areas of R&D for the FCC.
- Italian and French collaborations and common ongoing on
 - Positron source and capture system
 - High field magnets
 - Interaction region and MDI design
 - Collective effects
- Opportunities for expanding the collaboration ?

13

Additional

F**N**

CSN1-INFN supports FCC accelerator activity through RD_FCC

WP- Accelerator Coordinator M. B.

Lab and Units involved:

• Frascati

FCC

- Roma1
- Legnaro
- Ferrara
- Milano
- Genova
- Pisa
- Perugia

12.5 FTE (about 25% of the total FTE involved on RD_FCC)

Coordinated efforts via:

- Doctoral school on Accelerator Physics at University of Rome Sapienza
- CERN technical and doctoral students
- Simil-fellows on accelerator studies? (proposal for discussion)
- Contributions to topical and major conferences/ workshops (IPAC, FCC WEEK, eeFACT, EPS-HEP, ...)
- Participation to international accelerator and technical review committees (EIC, CEPC, SuperKEKB)

Horizon 2020 European Union funding for Research & Innovation

FCC-hh: EuroCirCol 2015-2019

European projects for FCC Design Study

Strategic activity for the FCC-hh **CDR** and input for the 2019 EPPSU

INFN Involvement in:

- Experimental insertion region design, WP3 (LNF)
- Cryogenic beam vacuum system, WP4 (LNF)
- High Field Magnet design, WP5 (Genova, Milano)
 Exploration of different design options for the 16T Nb₃Sn dipoles

FCC-ee: FCC-IS 2020-2024

European

Commission

Strategic activity for the FCC-ee mid-term and **Feasibility Study** reports and input for the 2025 EPPSU

INFN Involvement in:

• Collider design, WP2

IR and MDI design, task (LNF) Collective effects, sub-task (Sapienza, LNF)