PLANS FOR THE BACKGROUND **STUDIES**

G. Nigrelli1,2,3, M. Boscolo² , G. Broggi1,2,3, R. Bruce¹ , S. Redaelli¹

¹CERN, Geneva, Switzerland, ²INFN-LNF, Frascati, Italy, ³Sapienza Università di Roma, Roma, Italy

Introduction

• Collimation for FCC -ee

Collimation system & beam loss scenarios

- FCC-ee halo collimation system
- FCC-ee SR collimation system
- FCC-ee beam loss scenarios

Fast Instability

- Introduction
- Simulation set up
- Preliminary results

Introduction

• Collimation for FCC -ee

Collimation system & beam loss scenarios

- FCC-ee halo collimation system
- FCC-ee SR collimation system
- FCC-ee beam loss scenarios

Fast Instability

- Introduction
- Simulation set up
- Preliminary results

Collimation for FCC-ee

FCC-ee presents unique challenges:

- At Z pole 17.5 MJ of stored beam energy (two orders of magnitude bigger than any other lepton collider)
- Beams are highly destructive

Collimation system must:

- Minimize background for the experiments
- Protect the machine and the detectors from unavoidable beam losses

Collimation system foresees:

- Beam halo collimation + local protection collimators
- Synchrotron Radiation (SR) collimation, nearby IPs
- Secondary particle shower absorbers under study

Introduction

• Collimation for FCC -ee

Collimation system & beam loss scenarios

- FCC-ee halo collimation system
- FCC-ee SR collimation system
- FCC-ee beam loss scenarios

Fast Instability

- Introduction
- Simulation set up
- Preliminary results

FCC-ee halo collimation system

- Collimation system located in the **LSS F**
- Two stage betatron and off-momentum collimation system
- Protect the aperture bottlenecks (at Z 14.6 sigma (H) and 84.2 (V))

• Two tertiary collimator have been added for local protection of SR

- First collimator design for cleaning performance
	- Ongoing studies for optimizing the collimator design (**G. Broggi & R. Bruce - [slides](https://indico.cern.ch/event/1298458/contributions/5978231/attachments/2875273/5039766/FCCee_collimation_FCCweek2024.pdf)**)
	- Alternative crystal collimation under investigation (**G. Broggi - [slides](https://agenda.infn.it/event/39892/contributions/238493/contribution.pdf)**)
- Injection **PA (Experiment sit** $0045 = 223$ **niection into collic Technical sit** $LSS = 2032 m$ Technical site $LSS = 2032 m$ **Booster RI Beam dump** Arc length = 9616 586 \mathbf{v} booster $SSS = 1400 m$ $SSS = 1400 m$ (Optional (Optional Experime Experiment site) **Technical** si $LSS = 2032 m$ $LSS = 2032 m$ **Collider RF Betatron &** $SSS = 1400$ momentum collimation **PG (Experiment site)**

collimators off-momentum **betatron** 6000 1.5 \times Hor. coll. **TCP** $+$ Ver. coll. **TCS** L.O 4000 $\boxed{\text{m}}$ β [m] 2000 0 O 0.5 $\mathbf 0$ 34000 33000 33500 34500 35000 s [m]

FCC-ee SR collimation system

- Synchrotron radiation collimators nearby the IPs (**K. Andre - [slides](https://indico.cern.ch/event/1298458/contributions/5977816/attachments/2877568/5039739/FCC%20week%202024.pdf)**):
	- 6 collimators and 2 masks upstream of the IPs
	- Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

FCC-ee beam loss scenarios

Important to investigate different beam loss scenarios and identify the ones to protect against. Currently the one under investigation and planned to be studied are:

- Generic beam halo losses
- Beam losses from interactions with residual gas
- Beam losses from spent beam due to the collision processes
- Synchrotron radiation (**K. Andre - [slides](https://indico.cern.ch/event/1298458/contributions/5977816/attachments/2877568/5039739/FCC%20week%202024.pdf)**)
- Beam losses due to fast instabilities (**Current**)
- Beam losses from interactions with thermal photons
- Beam losses from top-up injection
- Beam losses from Touschek scattering

G. Broggi - [slides](https://indico.cern.ch/event/1298458/contributions/5977817/attachments/2877570/5039742/FCCee_beam_gas.pdf)

}

Introduction

• Collimation for FCC -ee

Collimation system & beam loss scenarios

- FCC-ee halo collimation system
- FCC-ee SR collimation system
- FCC-ee beam loss scenarios

Fast Instability

- Introduction
- Simulation set up
- Preliminary results

Rise time instability: Introduction

- The ring impedance can generate an instability that leads the **beam to be lost within few turns**.
- A feedback system is under development to dump the beam in case of rising instability.
- However, **feedback failures might happen and need to be investigated**.
- Effects on machine and detectors need to be understood to avoid damage and backgrounds.
- Collimation system must protect the machine/detectors also in this scenario.
- If not, both collimation and feedback systems must be improved.

Simulation setup

- Performed with **Xsuite-BDSIM** simulation tool.
- Building on the **state-of-the-art FCC-ee optics**.
- Fast instability introduced as **8 exciter placed along the ring** (one per arc, shown as green points).
- Kicks (H/V) are **equally distributed in phase advances across 90° and 180°** (smooth change in amplitude within 1 turn).
- The exciter **strengths change with time** as:

$$
k = \frac{A_0}{\beta_{x,y}} \cos(2 \pi Q_{x,y} t) e^{\frac{t}{\tau}}, \text{ where } \tau \text{ is the rise time.}
$$

• Resulting in **betatron oscillations exponentially growing with time**.

Simulation parameters:

- \cdot 5 \times 10⁵ 45.6 GeV electrons.
- **SR** (mean model), **RF** cavities, magnet **tapering.**
- detailed **aperture model**, **halo and tertiary collimators**, **SR collimator**, wiggler.

Case studies

- Since the instability can start at any point, it is relevant to **explore the phase dependence**.
- Exciters shifted along the ring to have **four different phase advances between the first exciter and the primary collimator**.
- **16 different cases** have been investigated:

Preliminary results

Lossmaps at each turn have been generated to study the **time distribution of the losses**:

- Entire beam is lost within 22(15) turns for $\tau = 6(3)$ turns.
- Losses start to be observed during the last \sim 5 turns for H and \sim 10 turns for V.
- Most of the configuration presents a turn where up to \sim 50% of the beam is lost.
- **Order of MJ lost across collimators and apertures in one turn!**
- The energy lost in first turns might be detected to damp the beam before damages.

Preliminary results

- Example of turns in which almost half of the stored beam energy would be released.
- For 6 turns the losses at the first util turn are up to \sim kJ
- For 3 turns the losses at the first util turn are already of the order of $\sim M$]
- In the vertical plane the losses are more spread across the turns.

Losses at the primary collimators: horizontal

To compare the various cases is useful to look at the first collimator with time:

Losses at the primary collimators: vertical

To compare the various cases is useful to look at the first collimator with time:

Introduction

• Collimation for FCC -ee

Collimation system & beam loss scenarios

- FCC-ee halo collimation system
- FCC-ee SR collimation system
- FCC-ee beam loss scenarios

Fast Instability

- Introduction
- Simulation set up
- Preliminary results

Conclusions

Collimation system for FCC-ee is being developed.

• **Beam losses scenarios must be investigated** to further improve the design where needed.

The **fast instability could be dangerous** if the feedback system fails.

- This instability can cause damage both at the machine and detectors, as well as increasing backgrounds.
- **Chances of damaging collimators/detectors**. The beam is lost within few turns, almost 50% of beam energy lost in one turn.
- The effect depends also on the phase advance.
- High losses nearby experiments, shower calculation in the detector region is needed.

Next steps

- Study of the spatial distribution on collimator jaws, small impact area expected.
- Further check in collaboration with the FLUKA team to verify collimation performance in this scenario. Might need to change the collimation system to mitigate the effect.
- Shower calculation to estimate eventual background/damage in collimators as well as in the detectors.
- Study of other beam losses scenario and background sources, such as:
	- Top-up Injection background
	- Thermal photon background
- Estimate of shower reaching detector region coming from beam losses (FLUKA/GEANT4).

Thank you for your attention.

 \bigcap FCC

Fast instability: Introduction

Assuming the beam as a single particle of charge $N_b e$ (no coupling) under the influence of an external force(wake fields/impedance) and neglecting the longitudinal motion.

A complex tune shift is generated due to the impedance of the ring $\Delta \omega = U - iV$:

- The betatron motion is influenced by such impedance.
- The real part of the impedance define growth/damping rate of the betatron oscillation.
- The **instability rise-time** is given by:

$$
\tau_{x,y} = \frac{1}{V_{x,y}} = \frac{4 \pi Q_{x,y}(\frac{E_t}{e})}{I \ c \times \{-Re[Z_{x,y}(\omega)\}}
$$

If $\tau > 0 \rightarrow$ betatron oscillations grow **exponentially.**

