

FUTURE CIRCULAR COLLIDER 2nd FCC Italy & France Workshop NEW DEVELOPMENTS IN FULL SIMULATION **SOFTWARE FOR FCC**

Author: Enrico Lupi Supervisors: Alvaro Tolosa Delgado, Brieuc Francois Special Thanks: Juan Miguel Carceller

INTRODUCTION **THE GOAL OF THE PROJECT**

The main pupose of this project is developing new tools for the validation of the FCC software.

What is validation?

Fundamental step in the software development lifecycle

Ensures the final product meets the user's need and fulfills its intended purposes

And for physics?

Making sure that the physics results obtained from the simulations are **compatible with our** expectations

Results comparing the output of new versions of the stack with reference stable ones can be checked on website

E. Lupi, 2nd FCC Italy & France Workshop, 6 Nov. 2024

FUTURE CERN CIRCULAR COLLIDER

How to achieve it?

GitLab CI/CD pipeline to run daily automated tests

INTRODUCTION THE GOAL OF THE PROJECT

The main pupose of this project is developing new tools for the validation of the FCC software.

What is validation?

Fundamental step in the software development lifecycle

Ensures the final product meets the user's need and fulfills its intended purposes

And for physics?

Making sure that the physics results obtained from the simulations are compatible with our expectations

Results comparing the output of new versions of the stack with reference stable ones can be checked on website

WARNING!

This pipeline only validates the physics! The software itself is tested by cron jobs in other repositories

E. Lupi, 2nd FCC Italy & France Workshop, 6 Nov. 2024

FUTURE CERN CIRCULAR COLLIDER

How to achieve it?

GitLab CI/CD pipeline to run daily automated tests

DO WE REALLY NEED THIS? WELL...

- Found bug in *Geant4* navigation that was distorting the tracking and interaction of particles.
- Compilation was still successful and no run time error appeared
- Only possible to spot by looking at physics quantities
 - Problem was spotted "by chance" when shooting γ -rays at $\theta = 90^{\circ}$, when it became obvious
- Thanks to the physics validation system, the reaction time will be ~1 day!

Drift Chamber detector containing the shape (not visible) responsible for the bug

E. Lupi, 2nd FCC Italy & France Workshop, 6 Nov. 2024

HOW DOES THE PIPELINE WORK? VARIABLES

The pipeline acts as a bash script executed in the pipeline runner.

The behaviour of the script is controlled by specific variables defined at the start of the file. Here are the most important...

Different pipeline schedules can be instantiated using different variable values.

VALIDATION_JOB_TYPE: Which type of validation job to run. In order to use the new version of the pipeline, select *run_script*

VERSIONS:

2

3

5

List of detector versions that need to tested, separated by a comma (e.g. "ALLEGRO_01_v03, IDEA_01_v03, CLD_03_v01")

MAKE_REFERENCE_SAMPLE:

Whether to store the output of the simulation and reconstruction phase as a reference for future use or new results to be checked

TAG:

COMPARISON_TEST: Which test to use to compare histograms: Exact match, Chi squared or Kolmogorov-Smirnov

Which tag to use for the key4hep release, identified by its date

HOW DOES THE PIPELINE WORK? STAGES

The pipeline is divided into stages, logically distinct steps that are run in a specified order.

The execution of the stages can depend on the global pipeline variables set at the start or on the success of the previous stages, providing a way to handle different situations.

Here are the stages when **VALIDATION_JOB_TYPE** is set to run_script:

E. Lupi, 2nd FCC Italy & France Workshop, 6 Nov. 2024

HOW DOES THE PIPELINE WORK? STAGES

SETUP:

- Clean the working directory
- Download the <u>key4hep-reco-validation</u> repository

EXECUTE SCRIPT:

- Execute scripts containing:
 - Simulation + reconstruction step
 - Analysis step to fill histograms in output ROOT file
- The script is **not** part of the pipeline itself. In particular, simreco script should be written by detector experts and live in FCCConfig environment
- Optionally move output ROOT files to specific reference folders if MAKE_REFERENCE_SAMPLE variable is set to "yes"

HOW DOES THE PIPELINE WORK? STAGES

MAKE PLOTS:

- Compare histograms in output ROOT file to reference ones
- Plotsthe two distributions with different background color depending on the result of the comparison: matching 👝, not matching 🛑, missing reference 🦲
- Send warning email in case one or more tests fail

MAKE WEBSITE:

• Create the html files for the static website.

DEPLOY:

• Deploy the website online

CLEANUP:

• Remove useles files from working directory

SCALIBILITY **ADDING NEW TESTS**

The pipeline has been designed with **flexibility** in mind, so that adding new detector concepts or subsystems to be tested would be as easy and straightforward as possible.

New Detector Option

Simple 3 steps process:

- Create appropriate **bash script** containing simreco and analysis stage
- Properly place it in the correct folder of the repository following the naming convention
- Add the detector version to the **VERSIONS** pipeline variable

New Subsystem

Even simpler, only the analysis file for the specific detector needs to be changed:

• Just add the correct histogram declarations and fill them in the analysis script

The website provides an accessible and easy-to-navigate way to check the results of the pipeline.

Home
Simulation and reconstruction
This is a webpage for validation of Key4hep software. The validation is done automatically and runs in Gitlab CI. The results are stored in EOS and For selecting different detectors and geometries, click on one of the detectors below: the available versions will be displayed. Clicking on one of the
Available Detectors:
ALLEGRO
ALLEGRO_o1_v03 Last updated: 2024-08-27 10:04:57
IDEA
CLD

Home page, containing the list of available detectors

nd published to this webpage.

them, you will be redirected to a page showing the available subsystems.

The website provides an accessible and easy-to-navigate way to check the results of the pipeline.

Home	Detectors -	
IDEA_o1_v0)3	
key4hep-spack	1cd6239bc224630205d0cec2723afb03fcc13b14	
spack	f596a8cdad601bb226723c551624d86abe3a6237	
nightly	/cvmfs/sw-nightlies.hsf.org/key4hep/releases/2024-08-26/x86_64-almalinux9-gcc11.4.1-opt	
Available Subsy	ystems:	
DriftChamber		
VertexDetector		
VertexInnerBarrel		
VertexOuterBarrel		

Detector version page, containing metadata information and list of available subsystems

The website provides an accessible and easy-to-navigate way to check the results of the pipeline.

Subsystems page, containing the histogram plots. In this example, the new and reference histograms match.

The website provides an accessible and easy-to-navigate way to check the results of the pipeline.

Examples of plot appearance when histograms do not match (left) or when the reference is missing (right).

Here are the plots already available...

Detector Version	Subsystem	
ALLEGRO_o1_v03	• Electromagnetic Calorimeter - Barrel	 CaloCluste CaloTopoC ECalBarrel total Er X, Y and
IDEA_o1_v03	 Drift Chamber Vertex Detector Vertex Inner Barrel Vertex Outer Barrel 	Number of Hit
CLD_03_v01	Standalone ARC Detector	 Photon co Photon co Photon co

Histograms

er Energy Cluster Energy IModuleThetaMergedPosition: nergy per evt d Z position

ts

punts per event punts vs. θ punts vs. θ of incoming particle

...and many more to come!

OUTLOOK **CURRENT LIMITATIONS**

NUMBER_OF_EVENTS pipeline variable exists, but sim digi reco scripts actually are fixed to only 10 events

- Could lead to large fluctuations that trigger notifications even though the physics is still valid
- Could make the system **blind to small** but relevant **changes** in the physics

Might be worth it to modify the scripts and let the number of events be an input

Pipeline relies on the software working as intended, and only checks the physics

perfectly..

Pipeline variables are global: same event number, statistical test, significance level... for all detectors and subsystems

FUTURE CERN CIRCULAR COLLIDER

Some cecks are implemented to handle software failure, but they are not working

OUTLOOK **FUTURE DEVELOPMENTS**

ERROR HANDLING SYSTEM:

- Implement fully functional check to handle software failure
- Avoid failure for one detector to affect the validation of others

MORE VALIDATION!

- The pipeline is ready, but there is still a lot of work to do...
- Add more tests and populate the validation website

Pag. 15

Contacts:

Enrico Lupi: enrico.lupi@cern.ch, enricolupi00@gmail.com

Links:

Valiation website: https://key4hep-validation.web.cern.ch/index.html Key4hep-validation-reco repository: https://github.com/key4hep/key4hep-reco-validation

HOW DOES THE PIPELINE WORK? THE PIPELINE SCHEDULE EDITOR

Edit Pipeline Schedule

Description	
-------------	--

Validation for IDEA, ALLEGRO and ARC standalone detectors

Interval Pattern

- Every day (at 8:11pm)
- Every week (Sunday at 8:11pm)
- Every month (Day 3 at 8:11pm)
- Custom

29 21 * * *

Schedules / #2749

[UTC+2] Bern

.....

Select target branch or tag

validation_project

Variables

Variable	~	EMAIL_ADDRESS	FCC.FullSim.warning@cern.ch	8	Variable
Variable	~	KEY4HEP_RECO_VALIDATIC	https://github.com/key4hep/key4hep-reco-	8	Variable
Variable	~	SIGNIFICANCE_LEVEL	0.9	8	Variable

 \sim

 \sim

Variable	~	COMPARISON_TEST	identical	8
Variable	~	NUMBER_OF_EVENTS	100	8
Variable	~	VERSIONS	ALLEGRO_o1_v03, IDEA_o1_v03, CLD_o3_v01	8
Variable	Variable ~ REFERENCE_SAMPLE		references	8
Variable	le ~ MAKE_REFERENCE_SAMPL		no	8
Variable	~	PLOTAREA	web_plots	8
Variable	~	WORKAREA	/validation	8
Variable	~	VALIDATION_JOB_TYPE	run_script	8
Variable	~	Input variable key	Input variable value	

SCALIBILITY **ADDING A NEW DETECTOR**

The pipeline has been designed with flexibility in mind, so that adding new detector concepts to be tested would be as easy and straightforward as possible.

Create bash script to run in the **EXECUTE SCRIPT** stage Goal: produce a properly structured ROOT file containing histograms

Two steps:

- Simulation and reconstruction usually done with script in FCCConfig, e.g. : ALLEGRO_o1_v03/ctest_sim_digi_reco.sh
- Analysis

Histograms should be saved as TH1 into specific TDirectories corresponding to the subsystems under study for the plot stage to work correctly.

source \$FCCCONFIG/share/FCC-config/FullSim/ALLEGRO/

usually is done with seperate python or ROOT script

SCALIBILITY **ADDING A NEW DETECTOR**

The pipeline has been designed with flexibility in mind, so that adding new detector concepts to be tested would be as easy and straightforward as possible.

The repository's structure mirrors the one for **k4geo**:

- Go to scripts/FCCee/ and check if there already is a directory for the geometry or create one if needed
- Create a subdirectory for the specific version

The bash script needs to be saved in the correct subdirectory of key4hep-reco-validation

SCALIBILITY **ADDING A NEW DETECTOR**

The pipeline has been designed with flexibility in mind, so that adding new detector concepts to be tested would be as easy and straightforward as possible.

SCALIBILITY **ADDING NEW VARIABLES**

Adding a new variable or even subsytem to analyze is even easier, as you only need to change one file.

> Open the analysis script (e.g. IDEA_make_TH1.py)

> > Add the correct TDirectory and histograms initialization at the beginning

dir DCH = outputFile.mkdir("DriftChamber")

hist dch hits = ROOT.TH1F("h DriftChamber hits", "Number of hits; Hits; Counts / 5 hits", 40, 0, 200)

dir list.append(dir DCH) histo list.append([hist dch hits]) ## ########### n hits = 0for dch hit n hits += hist dch hit

Loop over d for event in

##

##

And that's it! Only add the new sections in the correct file without modifying anything else.

2

FUTURE CERN CIRCULAR COLLIDER

Add the analysis inside the event loop					
Loop over dataset					
<pre>r event in podio_reader.get("events"):</pre>					
######################################	*######				
## BEGIN: Drift Chamber Event Loop	##				
##	##				

n_hits = 0 for dch_hit in event.get("DCHCollection"): n_hits += 1 hist_dch_hits.Fill(n_hits)					