Reconstruction in ALLEGRO

Giovanni Marchiori (APC Paris)

6 November 2024

The ALLEGRO concept

- A Lepton-Lepton collider Experiment with Granular Read-Out
 - IDEA-like tracking system (VTX+DCH+Si wrapper), with possible replacement DCH->Straws
 - Highly granular noble-liquid ECAL inside solenoid
 - Pb/W+LAr (or denser W+LKr)
 - Coil inside same cryostat as LAr
 - CALICE-like or TileCal-like HCAL outside solenoid
 - Light coil (0.76 X₀) + low-material cryostat < 0.1X₀
 - SiPMs directly on Scintillator or TileCal: WS fibres, SiPMs outside
- Detector design optimisation not complete yet needs full simulation & reconstruction algorithms beforehand!
- Full detector implementation in DD4hep/key4hep recently completed (detailed vtx+wrapper, ECAL endcap)

ALLEGRO ECAL

- highly granular calorimeter with absorbers planes inclined in r-phi (barrel) / arranged in turbine-like structure (endcap)
- readout by multi-layer segmented PCB planes alternated to Pb absorbers, gaps in between filled with LAr
- Some dimensions for the barrel: 11 longitudinal layers, $\Delta \theta \sim 10$ (2.5) mrad for regular (L1 strip) cells, $\Delta \phi \sim 8$ mrad

barrel

endcap

PCB (readout)

The ALLEGRO simulation

Based on DD4hep & Geant4

Giovanni Marchiori

ALLEGRO reconstruction: tracking

- Tracking in current ALLEGRO simulations is not yet ready
 - Hits are available, produced by applying Gaussian smearing to truth-level hits in trackers
 - Track reconstruction from hits not yet implemented
 - Significant work ongoing on ML-based tracking for IDEA (see talk by Andrea), could be ported with little effort to ALLEGRO once finalised
- As a proxy, for the time being, to enable starting p-flow reconstruction studies, reconstruction-level tracks are produced by cloning the generator-level tracks

ALLEGRO reconstruction: calorimetry

- and applying a sampling fraction correction to the cell energy for an initial calibration
 - Implemented for all calorimeter sub detectors (ECAL and HCAL barrel and endcaps)
 - detectors)
 - based on detector geometry and detailed electric field simulations of the cells
 - Crosstalk: see talk by Zhibo in parallel session yesterday
- High-level reconstruction: two clustering algorithms implemented so far, fixed-sized and topoclusters
 - => build clusters of fixed size
 - => build topologically connected clusters of variable size
 - (ECAL+HCAL => seeds for jet reconstruction)
 - implementation for endcaps

• **Digitisation** is implemented by summing all G4 hits within a given readout cell, defined by the detector readout granularity,

• Recent addition of past months: emulation of noise and x-talk in ECAL barrel (to be followed soon by other sub

• Noise: addition of random Gaussian-distributed noise energy per cell, starting from calculations of expected noise

• Fixed-size: scan theta x phi space with sliding window of constant size to identify local maxima in energy deposition

• Topological clusters: search for seed cells with S/N>T_seed, attach neighbouring cells with S/N > T_neighbours

Both algorithm can be configured to use cells from only one subsystem (e.g. ECAL-only "EM" clusters) or both

• SW implemented for all configurations; topoclustering working so far for ECAL/HCAL barrels; work ongoing on

ALLEGRO reconstruction: calorimetry

260 	1																															260	
255 255													•	•	•		••	•			•											255	
250													•	•	•		•	•	•													250	
245														•			• •			•	,											245	
240														•	•		• •		ŀ	•												240	
													•	•	•		•	• •	·	•													
235													•	•	•		•		•	•												235	
230														•	•		• •	•	•	•												230	
														•	•		••	•	•														
225															•			•		•												225	
220																																220	
																				<u> </u>	_		/			/							
												0					10			20				30									

ECAL-only SW cluster (photon)

Joint ECAL+HCAL topocluster (pion)

Cluster properties and performance: energy calibration

- BDT-regression-based calibration implemented
 - Inputs: energy fraction in each layer, total energy, cluster barycentre theta-phi
 - Target: E_cluster/E_particle
 - that one does not need to persist cell-level info
 - BDT trained with external tool, output saved to portable ONNX format, that can be read out in Gaudi

• Energy fractions are calculated by Gaudi algorithm and saved as cluster decorations (shapeParameters in EDM4hep), so

• Calibration can be applied by another Gaudi algorithm in all subsequent simulations and saved as cluster decoration **Energy Resolution**

Reconstruction in ALLEGRO (calorimeters) - 6/11/2024

Cluster properties and performance: photon identification

- BDT-based photon ID algorithm implemented

 - Target: binary classification with maximum area under curve
 - BDT trained with <u>external tool</u>, output saved to portable ONNX format, that can be read out in Gaudi •
 - Inference can be applied by another Gaudi algorithm in subsequent simulations and BDT score saved in output
 - Model trained for photons vs pi0s with 1<p<100 GeV, used to compare alternative detector
 - Starting to assess impact of x-talk (==> Zhibo) & noise

Giovanni Marchiori

• Inputs: longitudinal/lateral shower shapes from cell energies, calculated/saved as shape parameters by Gaudi algorithm

Cluster properties and performance: position and direction

• Position (overall and vs layer): response in theta from cell energy barycentre with linear weights (E_cell) show clear dependence on impact position, as also seen in ATLAS, due to finite cell granularity

- Offline study performed shows that this can be corrected e.g. with ad-hoc correction/regression
- Alternatively, similar performance has been observed using max(log(E_cell/ E_layer), w0) weights
- cluster shapeParameters
- direction (e.g. non-pointing photons)

• Layer-by-layer barycenters are now calculated by Gaudi algorithm with sets of w0s that optimise resolution and saved as

• Next-step: determine theta, phi energy resolutions vs layer and use layer barycenters and resolutions to reconstruct particle

Conclusion

- Basic algorithms for cluster reconstruction, calibration and identification in calorimeter implemented
 - But not for all sub detectors (missing topoclusters for ECAL/HCAL barrels)
- and have more stable results in the coming months
- Impact of noise and x-talk on the performance of these basic algorithms starts to be assessed
- Correction for cluster barycentre position (overall and layer-by-layer) also in place
 - Next: reconstruct cluster direction from layer barycentres without assuming projectivity from IP
- Beyond all this: more holistic approach to reconstruction and identification planned
 - Particle-flow
 - Machine learning techniques

• Now that full detector model is in place, we can hopefully start to spend less time on software itself and more on physics,