FCC FRANCE & ITALY 2<sup>nd</sup> workshop, Venice, 4 - 6 November 2024

# Summary VD and PiD detectors for FCC-ee

based on A. Andrezza, G. Boudoul, T. Papaevangelou, E. Robuti, M. Rolo, S. Senyukov, D. Contardo/P. Schwemling

D. Contardo (IP2I)

#### **Vertex Detector**

target precision  $\simeq 3~\mu m$  and X/X  $_0/layer$  less than 0.1% at low power  $\lesssim 50~mW/cm^2$ 

Monolithic CMOS technology is a unique solution to meet this performance

#### S. Senyukov developments in TPSCo 65 nm processes

- "small electrodes, thin epi-layer (10 μm), large size (ALICE-ITS3)
- "OCTOPUS" DRD3/7 project goal demonstrate best approach/alternatives toward 3 μm
  - process variants : STD  $\simeq 25~\mu m$  pitch, GAP  ${\lesssim}15~\mu m$
  - STD/GAP 100/5 ns timing precision targets
  - Asynchronous readout, digitization few bits for STD higher pitch, pixel grouping for GAP lower pitch



different processes provide differtent charge sharing, few digitisation bits can improve resolution

#### **Vertex Detector**

target precision  $\simeq 3 \ \mu m$  and X/X<sub>0</sub>/layer less than 0.1% at low power  $\lesssim 50 \ mW/cm^2$ 

Monolithic CMOS technology is a unique solution to meet this performance

M. Rolo developments in LFoundry 110 nm processes

- large electrodes, HR wafers, active thickness down to 50 μm
- ARCADIA-MD3
  - pixels 25 x 25 μm<sup>2</sup>, matrix 512 x 512, 1.28 x 1.28 cm<sup>2</sup> silicon active area, "side-abuttable"
    - < 30 mW/cm<sup>2</sup> at 100 MHz/cm<sup>2</sup>
    - 4.7 μm resolution with binary readout (not deconvoluted from telescope resolution)



Also studies of 10  $\mu m$  pitch and grouping in mini-strips

### Vertex Detector mechanical designs

crucial to fully benefit from sensor performance (or to avoid over-designing)

# F. Palla stave concept small sensors, $0.25\% X/X_0$ /layer



large bent sensors 2 in layer 1-2, 4 in layer 3 and 4 improved  $X/X_0$ , but fill factor and hermeticity issue



S. Senyukov SEED large sensors in snail shape allowing overlaps



Several other common challenges

- airflow cooling
- stability
- services
- MDI integration
- accessibility

### **Vertex Detector simulations**

G. Boudoul, A. Andreazza

- Provide guidance on overall configuration can be parametric
  - radius and lentgth of layers
  - single versus double layers
  - requirements / layer(disk) extended to outer pixel and wrapping layers...
- Provide guidance for sensor and system R&D need detailed geometries, full GEANT simulations
  - operation condition, rates and occupancies at different sensor positions including background
    - input to readout architecture
  - realistic performance estimate with respect to
    - sensor parameters, system design (X/X<sub>0</sub>, hermeticity, acceptance), mis-calibrations
- Essential piece is development of a digitizer (started)
  - produce realistic clusters for all tracks
    - eg correct hit positions and occupancies
  - should be usable in all sensor & detector configurations







### Motivation for PID

Flavor physics, Higgs decays to fermions, HNL mass...

To F  $\simeq$  30 ps precision at  $\simeq$  2.2(0.15) m provide 3 $\sigma$   $\pi$ /K discrimination  $\gtrsim$  3(0.66) GeV standalone

needed in the 1 GeV region to complete dE/dx and dN/dx in LGVD\*

strong interest to have combined position and timing precision in a same sensor



a layer at 15 cm would allow  $3\sigma$  discrimination up to the 2 T-field cutoff of 0.66 GeV at 2.2 m at 3T the momentum cut-off is 1 GeV at 2.2 m a ToF layer would be useful in front of the LGVD at 35 cm position precision target in r/ $\Phi$  5(7) µm at .35(2.2) m

Monolithoc CMOS and LGADS



\* the technology could be deployed in first layers of a Si/W elctromagnetic calorimeter and a LumiCal, \*\* not correcteed for time reference resolution

#### Monolithoc CMOS and LGADS

General MCMOS/LGAD technology problematics

- Mini CA Intrinsic time precision limit w/ and w/o gain layer
  - versus pixel size/pitch active thickness capacitance
- 175  $\mu$ m, Position precision  $\simeq 60$  • channel does

LFoun

.5 mm

с.

w/gain

- channel density versus position/timing performance (driving power)
- low power premplification

#### Other MCMOS technology R&D

- TJ 180 nm CASSIA CERN, w/ amplification  $\simeq 50 \times 50 \ \mu m^2$
- SiGe technology UniGe (not commercial), w/o and w/ amplifications

#### MPGD - ex. Picosec T. Papaevangelou



s E. Robuti 5 x .45 mm<sup>2</sup> precision SD rench isolated ge sharing าed

\* the technology could be deployed in first layers of a Si/W elctromagnetic calorimeter and a LumiCal, \*\* not correcteed for time reference resolution

Monolithoc CMOS and LGADS



\* the technology could be deployed in first layers of a Si/W elctromagnetic calorimeter and a LumiCal, \*\* not correcteed for time reference resolution

Monolithoc CMOS and LGADS



\* the technology could be deployed in first layers of a Si/W elctromagnetic calorimeter and a LumiCal, \*\* not correcteed for time reference resolution

## Outlook

- Sensor R&D
  - different technologies shoud eventually converge on similar performance for VD
  - technology alternative(s) to achieve PID/Tracking is (are) yet to be established
  - ➢ work will continue in the first 3-4 years DRD period for comparative evaluations
  - In longer term, 3D wafer stacking, finer foundry nodes, could shed new light for channel density and power consumption (DRD& mandate)
- System aspects are crucial, they may limit the performance
  - particularly for  $X/X_0$ , MDI integration and systematic effects
- Simulation studies are needed
  - to guide R&D
  - to define and refine detector configurations and requirments (as a function of  $r/\eta$ )
  - to assess effects of hermeticity, acceptance, mis-calibrations

France and Italy are developing complementary technologies and system approaches, synergies can be exploited EoIs foressen on VD, tracking Wrapping Layers and ToF/Tracking Layers

## Outlook

| • | Sensor R&D                                       | Features                                       | Earlier<br>experim | ents                                                                       | FCC inner<br>vertex | FCC outer<br>vertex | FC<br>wra | C<br>pper |               |
|---|--------------------------------------------------|------------------------------------------------|--------------------|----------------------------------------------------------------------------|---------------------|---------------------|-----------|-----------|---------------|
|   | technolc                                         | 10 um pitch                                    |                    |                                                                            |                     |                     |           |           |               |
|   | > work w                                         | "effective" 10 um pitch<br>with charge sharing |                    |                                                                            |                     |                     |           |           |               |
|   | > on long                                        | 20 ns time-stamping                            |                    |                                                                            |                     |                     |           |           | annel density |
|   | and pov                                          | 30 ps time resolution                          |                    | Monolithic CMOS                                                            |                     |                     |           |           |               |
| • | System aspe                                      | Serial powering capability                     |                    | common technology matrix<br>A. Andreazza<br>can be connected to system and |                     |                     |           |           |               |
|   | • particula                                      | Chip-to-chip data transmission                 |                    |                                                                            |                     |                     |           |           |               |
|   |                                                  | 10 mW/cm2 power                                |                    | simulation aspects                                                         |                     |                     |           |           |               |
| • | Simulation (                                     | 50 mW/cm2 power                                |                    |                                                                            |                     |                     |           |           |               |
|   | • to guide                                       | 100 mW/cm2 power                               |                    |                                                                            |                     |                     |           |           |               |
|   | <ul> <li>to define</li> <li>to associ</li> </ul> | Extreme stitching (20 cm size sensors)         |                    |                                                                            |                     |                     |           |           |               |
|   |                                                  | Moderate stitching (4 cm size sensors)         |                    |                                                                            |                     |                     |           |           |               |

France and Italy are developing complementary technologies and system approaches, synergies can be exploited EoIs foressen on VD, tracking Wrapping Layers and ToF/Tracking Layers