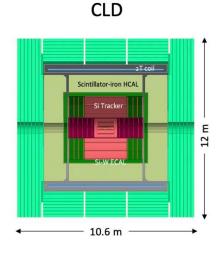
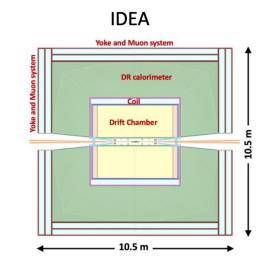


Romualdo Santoro

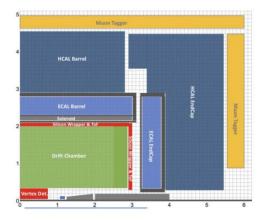
Università dell'Insubria and INFN – Milano


TUDION

Many thanks to: M. Da Rocha Rolo, A. Andreazza, S. Senyukov, N. De Filippis, M. Poli Lener, M. Lucchini, G. Gaudio, N. Morange, V. Boudry


Detector concepts for FCC-ee

CDR



- □ Full Silicon vertex detector + tracker
- Very high granularity: CALICE-like calorimetry;
- Muon system
- Large coil outside calorimeter system

- Vertex: MAPS (ARCADIA / ATLASPIX3)
- Drift Chamber
- Silicon wrapper: strip, MAPS / DMAPS possibly with timing layer
- Dual Readout calorimetry: (Crystal +) fibre sampling
- Muon chamber (Preshower): μ-RWELL

Noble Liquid ECAL based

- Vertex: MAPS / DMAPS possibly with timing layer
- Drift Chamber
- Silicon wrapper: MAPS / DMAPS possibly with timing layer
- High granular ECAL: Noble liquid + Pb or W
- High granular HCAL: Scintillator + Iron
- Muon tagger: RPC, Micro Megas

Interests in detector R&D topic for FCC-ee Subdetectors

France

Tracking TPC IRFU: CPPM, IPHC, IP2I, LPNHE; **MCMOS** IJCLab, Ganil, LPSC DCH Timing Layers MicroMegas IRFU, MCMOS IPHC, IP2I, CPPM, Optical CPPM, IP2I Liquid Argon calorimetry ٠ ECAL APC, CPPM, IJCLAB, LPNHE, LAPP electronics Omega

Sampling calorimetry with fully embedded electronics

- ECAL/SiW (calice)IJCLab, LLR, LPNHE;HCALIP2I,electronicsOmega
- Optical calorimetry
 - ECAL GRAiNita
 - Crystals

IJCLAB, LPC-CF, IP2I

C Italy & France

- Muon hodoscope/tagger
 - Micromegas(RPC
- IRFU,

experience at IP2I but no specific project)

G Bernardi: this workshop

worksnop, venice, 4-6th Nov-2024

Italy

- Vertex

 - ATLASPIX3
- Tracking
 - Drift Chamber
- Wrapper and timing layer
- Calorimetry
 - Dual readout
- Muon station
 - \square µ-RWELL

Experience with IMAPS vertex detectors in France

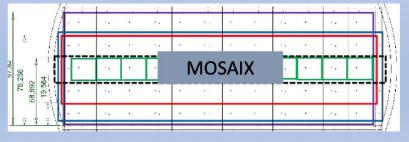
• STAR-PXL @ RHIC

- ULTIMATE chip design (IPHC)
 - First MAPS for vertex detector

• ALICE-ITS2 @ LHC

- ALPIDE chip design (IPHC, IRFU, IP2I)
 - First in TJ 180 nm
 - First MAPS tracker chip
- Detector assembly (IPHC)

• CBM-MVD @ FAIR


- MIMOSIS chip design (IPHC)
 - TJ180 nm
 - Hit rate: 70 MHz/cm² (ALIPDE x2)

• Belle II VXD @ KEK

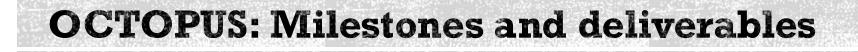
- OBELIX chip design (IPHC, CPMM)
 - TJ 180 nm
 - Time resolution: 100 ns
 - Hit rate: 120 MHz/cm² (triggered)

• ALICE-ITS3 @ LHC

- MOSAIX chip design (IPHC)
 - First in TPSCo 65 nm process
 - First large area stitched sensor ~260 cm²

	OBELIX-1	
	matrix: 896x464 pixels overall size 30.2x18.8 mm ²	R #
-		ALC: NOT
Sum	nuera	
A DATE	bestityed.	100 300
-	digital periphery	
HUMAN		

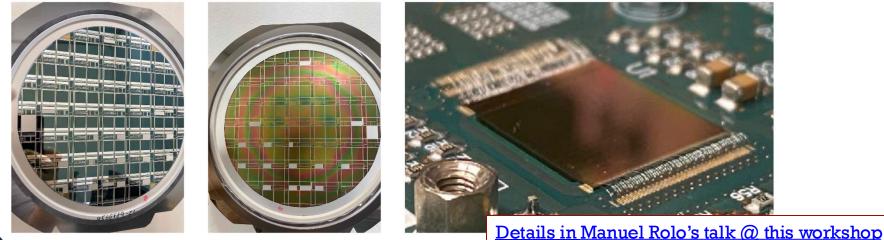
OCTOPUS (DRD3/7)



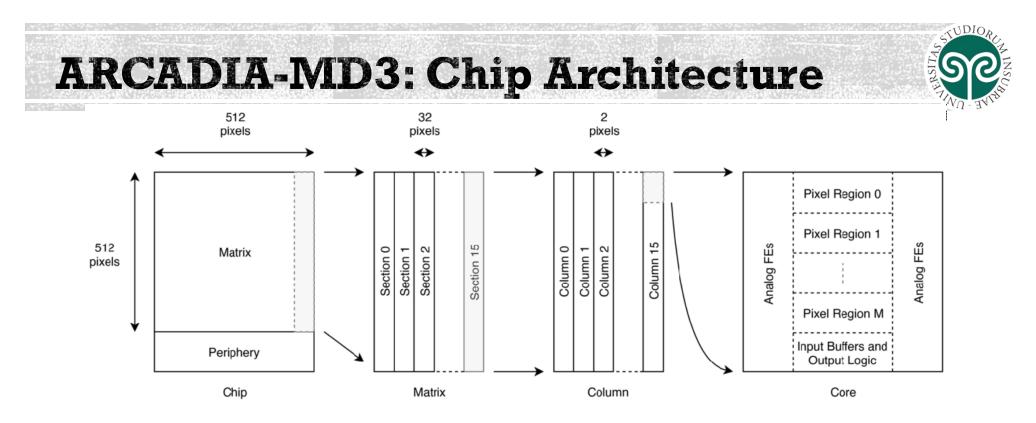
Optimized CMOS Technology fOr Precision in Ultra-thin Silicon

- Simulation, development and characterization of MAPS targeting future Lepton Collider specifications:
 - Single point resolution: 3 µm
 - Time resolution: 5 ns
 - Power dissipation: 50 mW/cm²
 - Thickness: 50 µm
 - Readout architecture scalable to large area
- Intermediate step high resolution sensor for beam telescope
 - □ Time resolution: 100 ns
 - Power dissipation: <500 mW/cm²

Number	Deliverable/Milestone Title	WP project #	Lead	Туре	Dissemination Level	Due Date
M1	Report on Demonstrators	4	DESY	Report	DRD3 report	Month 9 (Q1 2025)
D1 MPR2	Beam Telescope Demonstrator Matrix Submission 3 µm	1, 2	IPHC (Prototype Full	Manual / Presentation column height	Month 24 (Q2 2026)
M2	Report on Demonstrator Matrix Characterization	3, 4	DESY	Report	Publication	Month 36 (Q2 2027)
D2 MPR3	Full Beam Telescope Sensor Submission	2, 3	ІРНС 🤇	Prototype	Manual / Presentation 2cm² sensor ——	Month 48 (Q2 2028)
МЗ	Report on Beam Telescope Sensor Performance	3, 4	DESY	Report	Publication	Month 60 (Q2 2029)
D3 ER	LC Vertex Sensor Demonstrator Submission	1, 2	ІРНС 🤇	Prototype	Manual / Presentation	Month 66 (Q4 2029)
M4	Report on LC Vertex Sensor Demonstrator Performance	3, 4	DESY	Report	Publication	Month 78 (Q4 2030)

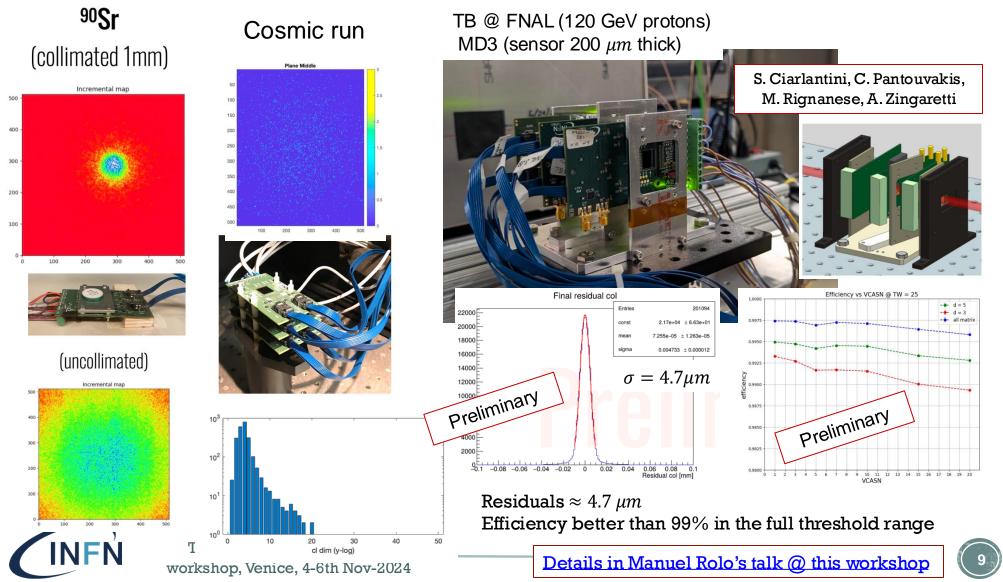


- □ Monolithic active sensor thickness in the range $50 \mu m$ to $500 \mu m$;
- Operation in full depletion with fast charge collection by drift, small collecting electrode for optimal signal-to-noise ratio;
- Scalable readout architecture with ultra-low power capability (10 mW/cm2);
- Compatibility with standard CMOS fabrication processes
- Technology LF11, 110nm CMOS node (quad-well, both PMOS and NMOS), high-resistivity bulk
- Custom patterned backside, patented process developed in collaboration with LFoundry



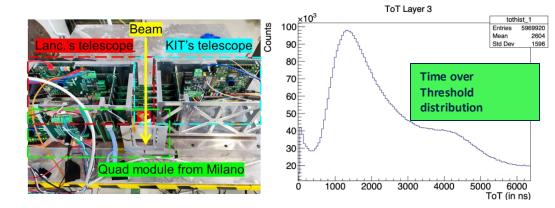
The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

- Pixel size 25 μ m x 25 μ m, Matrix core 512 x 512, 1.28 x 1.28 cm² silicon active area, "side-abuttable"
- Triggerless data-driven readout and low-power asynchronous architecture with clockless pixel matrix
- Event rate up to 100 MHz/cm2 (design post-layout simulations, to be demonstrated)
- □ High-rate operation (16 Tx): 17-30 mW/cm² depending on transceiver driving strength (measured)
- □ Low-power operation (1 Tx): 10 mW/cm² (measured)



Details in Manuel Rolo's talk @ this workshop

ARCADIA-MD3: charged particles



ATLASPIX3 Test Beam Plans

- ATLASPIX3 sensors are available since 2020
- General purpose DMAPs: characterized in test beam by many groups
 - KIT
 - FCCee/CEPC groups
 - LHCb Mighty Tracker community
- A focus for the future will be the system aspects:
 - multi-chip systems
 - multi-chip modules
 - multi-module operation

DESY 2022

ATLASPIX3

4-chip

module

Quad module and multi-chip telescopes operation

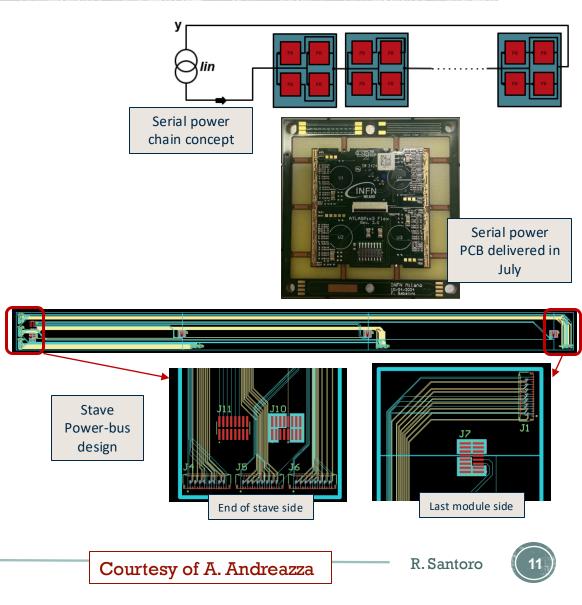
CERN H8 line 2024

Module inserted in the Hydra calorimeter test beam 28/08-04/09

Testing the integration in a readout chain with other detectors

The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

Courtesy of A. Andreazza



ATLASPIX3 Test Beam Plans

- 2025 R&D program
 - Available new set of quad modules in serial-power configuration
 - Building pseudo-staves in Italy and UK
 - Can be arranged in a large area telescope (4x4 cm² cross section)
- 2026 R&D program
 - Probably switch to integration of MightyPixV2 systems
 - open collaboration with LHCb MightyTracker upgrade
 - should include also sensor characterization
- General comments:
 - Limited personpower: join TB effort with other communities is essential
 - Integrating the DAQ systems is a topic where injected personpower will be very beneficial

Single column prototype (2026) > 2cm² prototype (2028)

OCTOPUS (DESY/CERN)

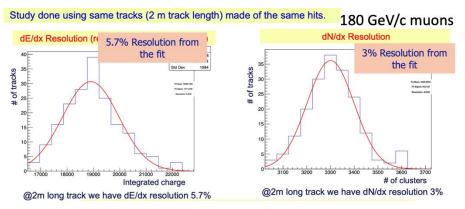
ARCADIA MD3

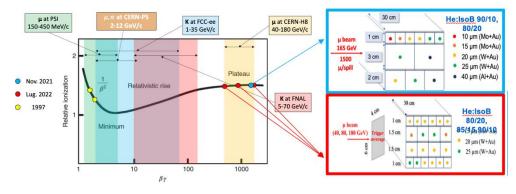
- **TB2024** data analysis is still on-going (preliminary results very promising)
- The collaboration is considering a TB in 2025 (DESY / CERN) to qualify 50 μm thick sensors
- Stable system: it could be considered as tracking for other detectors

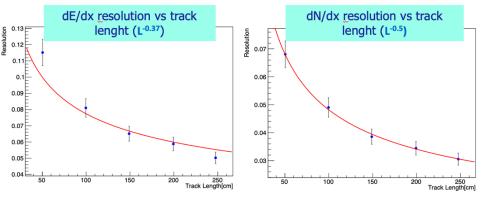
Vertex: Tentative TB schedule for 2025 and beyond

ATLASPIX3

Beam tests in 2025 and 2026 if personpower available







Drift Chamber: TB strategy

- Different beam tests to assess and optimize the performance of cluster counting/timing techniques:
 - Two muon beam tests performed at CERN-H8 $(\beta\gamma > 400)$ in Nov. 2021 and July 2022 (pT = 165/180 GeV).
 - A muon beam test (from 4 to 12 GeV momentum) in 2023 performed at CERN. A new test beam, same configuration, done in July 2024
 - □ Ultimate test at FNAL-MT6 in 2025 with π and K ($\beta\gamma = 10-140$) to fully exploit the relativistic rise.

~ 2 times improvement in the resolution using dN/dx method

The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

R&D for the full-length prototype (2025)

Check the limits of the wires' electrostatic stability at full length and at nominal stereo angles

Test different wires: uncoated Al, C monofilaments, Mo sense wires, ..., of different diameters

- Test different wire anchoring procedures (soldering, welding, gluing, crimping, ...) to the wire PCBs
- Test different materials and production procedures for spokes, stays, support structures and spacers
- Test compatibility of proposed materials with drift chamber operation (outgassing, aging, creeping, ...)
- Validate the concept of the wire tension recovery scheme with respect to the tolerances on the wire positions
 - Optimize the layout of the wires' PCBs (sense, field and guard), according to the wire anchoring procedures, with aim at minimizing the end-plate total material budget
- Starting from the new concepts implemented in the MEG2 DCH robot, optimize the wiring strategy, by taking into account the 4m long wires arranged in multi-wire layers
- Define and validate the assembly scheme (with respect to mechanical tolerances) of the multiwire layers on the end plates
 - Define the front-end cards channel multiplicity and their location (cooling system necessary?)
- Optimize the High Voltage and signal distribution (cables and connectors)
- ► Test performance of different versions of front-end, digitization and acquisition chain

Courtesy of N. De Filippis

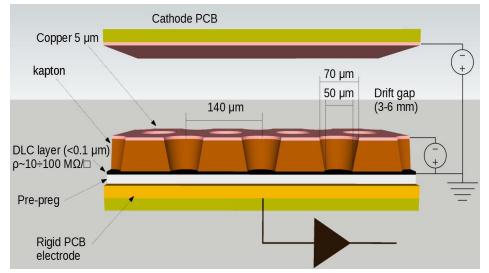
R&D for the full-length prototype (2025)

- Check the limits of the wires' electrostatic stability at full length and at nominal stereo angles
- Test different wires: uncoated Al, C monofilaments, Mo sense wires, ..., of different diameters
 - Test different wire anchoring procedures (soldering, welding, gluing, crimping, ...) to the wire PCBs
 - Test different materials and production procedures for spokes, stays, support structures and spacers
 - Test compatibility of proposed materials with drift chamber operation (output) aging, creeping, ...)
- Validate the concept of the wire tension recovery tolerances on the wire positions
 - cording to the wire anchoring Optimize the layout of the wires' PCF procedures, with aim at minin

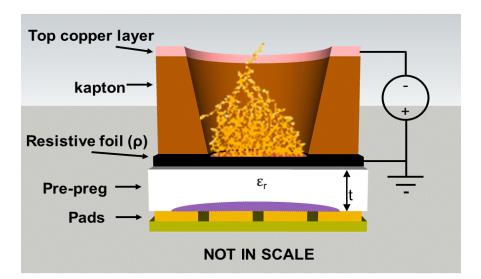
Necessary R&D, done in parallel with small Prototypes, not yet included in TB activities ► Starting from ed in the MEG2 DCH robot, optimize the wiring The 4m long wires arranged in multi-wire layers strat

- ► Define The the assembly scheme (with respect to mechanical tolerances) of the multiwire layers on the end plates
 - Define the front-end cards channel multiplicity and their location (cooling system necessary?)
- Optimize the High Voltage and signal distribution (cables and connectors)
- Test performance of different versions of front-end, digitization and acquisition chain

The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024


Courtesy of N. De Filippis

The μ -RWELL - recap


G. Bencivenni et al., 2015 JINST 10 P02008

The $\mu\text{-}RWELL$ is a resistive MPGD composed of two elements:

- Cathode
- μ-RWELL_PCB:
 - a WELL patterned Kapton foil (w/Cu-layer on top) acting as amplification stage
 - a resistive DLC layer (*) w/ $\rho{\sim}10\div100~M\Omega/{\Box}$
 - a standard readout PCB with pad/strip segmentation

 $\ensuremath{^{(*)}}$ DLC foils are currently provided by the Japan Company – BeSputter

The **"WELL"** acts as a **multiplication channel** for the ionization produced in the drift gas gap.

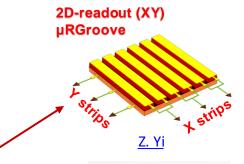
The **resistive stage** ensures the **spark amplitude quenching**. **Drawback:** capability to stand high particle fluxes reduced, but **largely recovered** with appropriate **grounding schemes** of the **resistive layer**

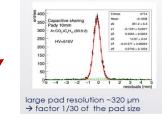
The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

2

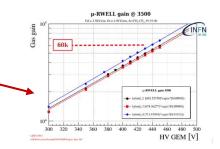
R&D program 2024

The production of the 2023 & 2024 layouts has been delayed due to the increased workload at the Rui's workshop


Solution under study to increase detector stability:


1. μ -RWELL "well optimization" \rightarrow This study was done with GEM detectors but never with uRWELL \rightarrow well pitch from 140 μ m to 90 μ m with an increase in gain of about a factor of 2. Designed at the beginning of 2024 & detector delivery in Sept. 2024.

New layouts under study for Pre-shower and Muon systems:

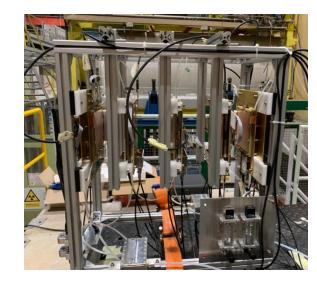

- μ-RGroove layout → new layout, where the amplification stage is not based on the «wells» but on the «grooves». This facilitates the realization of the strip readout on the top, without introducing dead-zones (introduced by Z. Yi in RD51). Designed at the end of 2023 & detector delivery in Sept. 2024.
- 2. "µ-RWELL CS" layout with pad readout → new layout, where the readout PCB is not segmented in strips but with pad. This choice allows to collect all the charge on a single readout electrode with a small increase of FFE channels (30%). With pad of few cm2 a spatial resolution of ~300 um has been achieved (introduced by M. lodice in RD51). Designed in Oct. 2024.
- 3. "GEM + μ-RWELL CS" (strip/pad readout)→ GEM pre-amplification stage, to lower the operating point, greatly improving the RWELL stability and maintaining high spatial performance with millimetric pitches. GEM production will be produced in January 2025.

2024

- Gain measurement & Gain Uniformity with X-ray (November):"

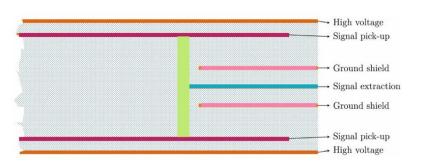
- **1.** μ-RWELL pitch optimization;
- "µ-RWELL CS" layout with strip readout; 2.
- 3. μ -RGroove layout;

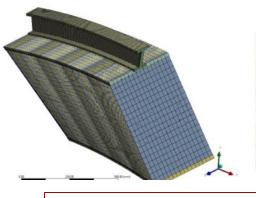
2025

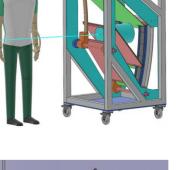

- Gain measurement & Gain Uniformity with X-ray (June):
 - 1. "μ-RWELL CS" layout with pad readout;
 - 2. "GEM + μ -RWELL CS" layout with strip readout;
- TB (Oct/Nov.) @ H8-SPS-CERN: 5 new layout will be tested
 - 1. "μ-RWELL CS" layouts (strip/pad)
 - "GEM + μ -RWELL CS" layouts (strip/pad); 2.
 - 3. μ-RGroove layout;

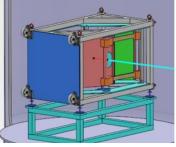
For the TB an external trackers with a spatial resolution better than 100 um will be used

Tentative schedule for 2024 & 2025






R&D on noble liquid ECAL for ALLEGRO

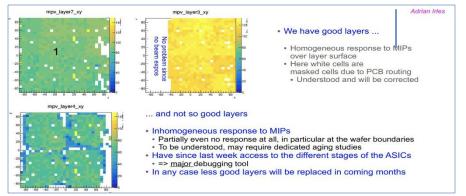

- Next goal: validation of a prototype large enough to fully contain EM showers (~2028)
- Main activities focused on the mechanical design of this prototype
- No test beam planned in the next years, performances with small scale prototypes have been assessed

Implementation: multi-layer PCBs

The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

Courtesy of N. Morange

R. Santoro



SiW-ECAL Beam test plans 2025

2022:

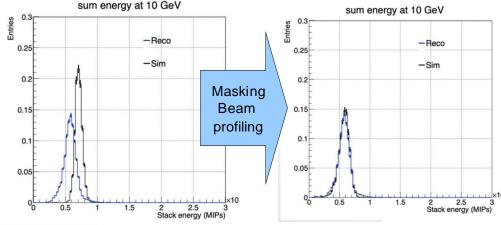
- With inhomogenous stack : 3 FEV versions, 3 sensor thicknesses
- Beam test at DESY (mip and low-E e⁻ response) and CERN (high-E e^{-}/π^{+} responses with AHCAL)

FEV-COB

Based on FEV11

compatible

External connectivity



- BGA packaging
- Incremental modifications - From v10 -> v12
- Main "Working horses" since 2014

- Chip-On-Board : ASICs BGA packaging wirebonded in cavities

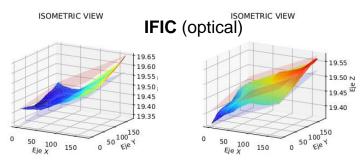
- Improved routing Thinner than FEV with BGA Local power storage
 - Different external connectivity

Many (some new) local defaults \rightarrow full modellisation needed

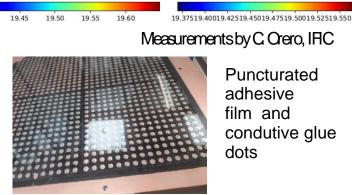
Yuichi Okugawa (PhD in Feb. 2024)

The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

Courtesy of V. Boudry


SiW-ECAL Beam test plans 2025

2025 (originally expected 2024)


- New FEV version, with improved
 - Power distributions
 - Local power regulation: LDO's
 - Local High Voltage filtering & Supply
 - Signal distribution (buffering), data paths
 - Monitoring (single ID, temp, probe analogue line)
 - ASIC shielding/routing
- Fully revised gluing & assembly procedure
- All 500 μm sensors

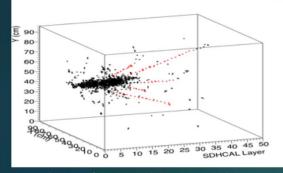
1 week DESY BT asked, for March 2025

- □ Two new layers + AHCAL + ALPIDE telescope
- □ Mip & Low-E $e^- \rightarrow$ sub-cell uniformity response

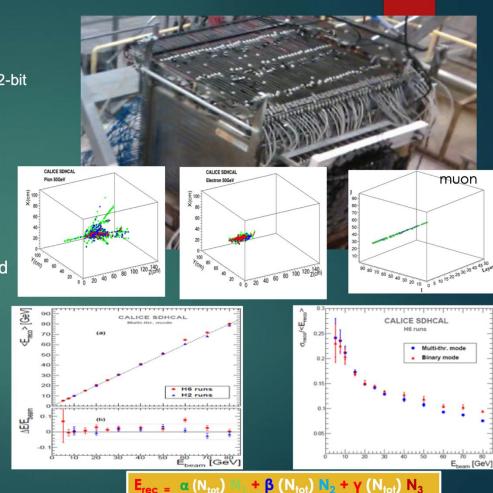
Same PCB before / after 10-day dry storage

Courtesy of V. Boudry

SDHCAL


SDHCAL-RPC

48 layers of 2 cm stainless steel interleaved with planes made of Glass RPC and their embedded readout 2-bit electronics allowing a lateral segmentation of 1 cm²


A technological prototype of 48 layers fulfilling all the ILD requirements :

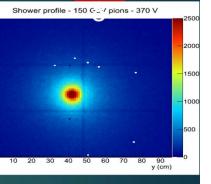
- compactness
- > self-supporting mechanical structure.
- > Triggerless mode
- Power-pulsing mode

was built and expensively and successfully tested

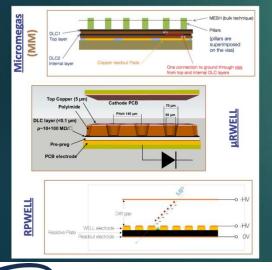
Hough transform tracks to control the

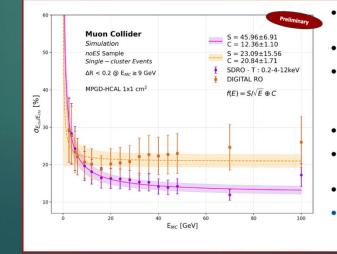
The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

Details in I. Laktineh talk @ this workshop



SDHCAL




SDHCAL-MPGD

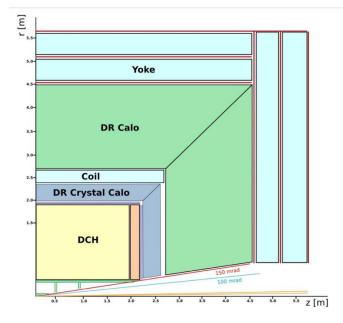
MPGD offers the possibility to operate with high particle rate (> 1 MHz/cm²) and excellent spatial resolution First attempt was made with standard MM by LAPP colleagues using a variant of HR (allowing a few fC threshold)

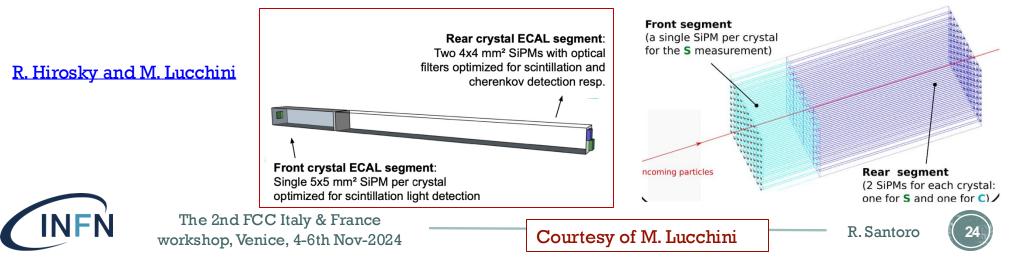
10 years later, the second generation of MPGD using resistive anodes allows robustness against discharges

 π^{\pm} guns with energy ranging from 2.5 to 100 GeV;

- reconstruction with Digital RO and SDRO:
 - Thresholds considered for SDRO: 0.2, 4, 12 keV
- fit function $f(E)=S/\sqrt{E\oplus C}$;
- comparable performances below 6 GeV between Digital RO and SDRO
- **Digital RO: saturation at high energies**
- Overall, better performances of the SDRO
 - o σ/E = 45.96%/√E⊕12.36%

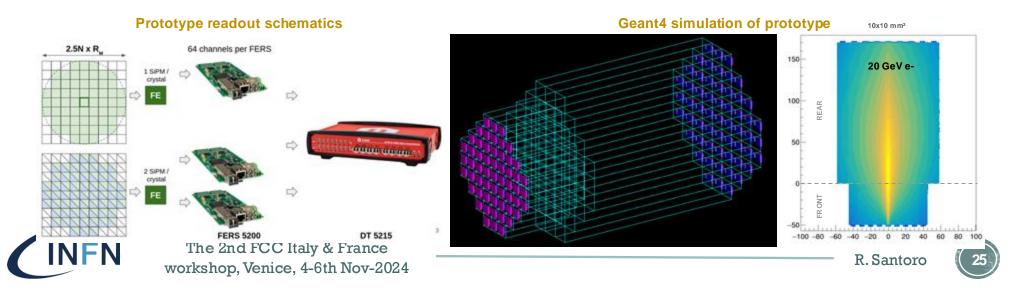
The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024



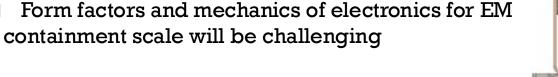

only pions not showering in ECAL;

MAXICC: Maximum Information Crystal Calorimetry for future e+e- colliders

- Evaluate the potential and the feasibility of integrating a cost-effective homogeneous dual-readout segmented crystal EM calorimeter in the IDEA detector
 - First studies and concept descriptions in:
 - 2020 JINST 15 P11005
 - 2022 JINST 17 P06008
- Activity at 360 degrees:
 - Simulation studies (from standalone to full sim)
 - R&D on technology and proof-of-principle
 - Prototyping of a calorimetric module
- Two full containment prototypes with different crystals to qualified on beam in the next years



MAXICC TB plans: towards a multi-channel prototype



- 2024 lab and beam test results on single calorimeter cells will inform the choice of a baseline technology for a full containment EM calorimeter prototype (~200 channels)
- Procurement of electronics completed (FERS-5200), procurement of crystals (PWO/BSO) and SiPMs in early 2025, mechanics and front-end design about to start
 Coordinated/funded by PRIN2022 (MAXICC) and INFN RD_FCC
- 2 weeks of test beam at CERN SPS (H6) requested for late September 2025
- Possible joint test with HIDRA fiber calorimeter prototype from 2026

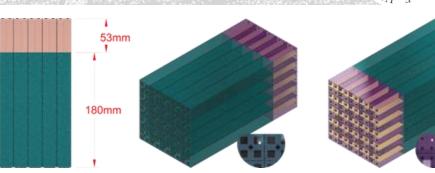
Complementary matrix plan for beam tests in 2025

Similar readout w/ FERs 5200 for front section. most likely DRS or NALU HDSoc for rear section

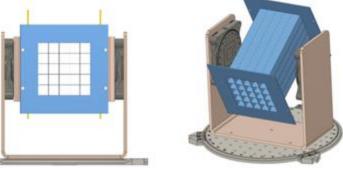
- **Studies to improve electronics (e.g. linearity)**
- Carbon fibre alveolar, mechanic support, and cooling options, R&D in progress

Coordinated/supported/funded by US Calvision

Alternative full containment prototype using

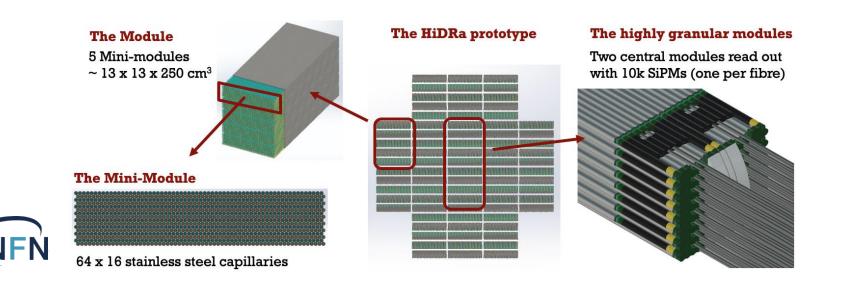

a BGO crystal matrix: $22X_0$ deep, $5X_0 \ge 5X_0$ lateral

Crystal purchase in progress - expected to arrive and


with $1X_0$ and $\frac{1}{4}X_0$ lateral granularity

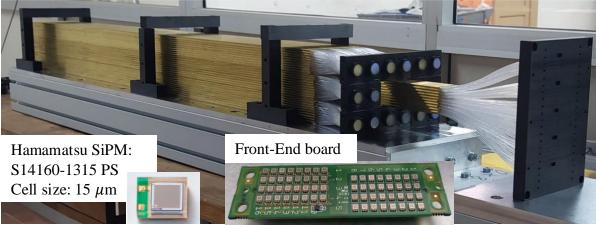
complete testing in spring

- over next 6-8 months



HiDRa: High-Resolution Highly Granular Dual-Readout Demonstrator

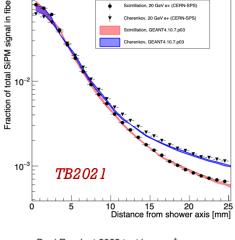
- R&D aiming at building and qualifying the hadronic response of a dual-readout calorimeter partially equipped with highly granular modules
 supported by INFN grant
- In recent years, prototypes of increasing complexity have been built and qualified on beam
 - □ 1st prototype: EM-size with a highly granular core
 - □ 2nd prototype: built with part of the HiDRa minimodules



The EM-size prototype (TB2021-2023)

- EM-size prototype $(10 \times 10 \times 100 \text{ cm}^3)$
 - 9 modules made of 16 x 20 capillaries (160 C and 160 Sc)
- Readout
 - Highly granular readout: Each fibre is connected to a SiPM (central module)
 - Standard readout: each module equipped with 1 PMT for C and 1 PMT for Sc fibres (8 surrounding modules)
- Different beam test to qualify the performances with electrons and to tune the Montecarlo simulation

Distance from shower axis [mm] Dual Readout 2023 test beam e 띶0.055 0.05 (MC2021) = <u>14.8%</u>⊕0.5% 0.045 0.04 0.035 R. Santoro @ ICHEP2024 0.03 0.025 0.02 Preliminary - TB2023 0.15 0.2 0.25 0.3 0.35 0.1 1/√E [GeV^{-1/2}]


EM 6 M 7 M 8

M4 MØ M5

M 3

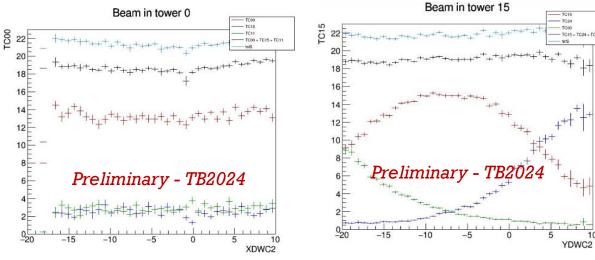
M1 M2

20 GeV e+ (CERN-SP

N. Ampilogov et al 2023 JINST 18 P09021

R. Santoro

Prototype with HiDRa minimodules (TB2024)

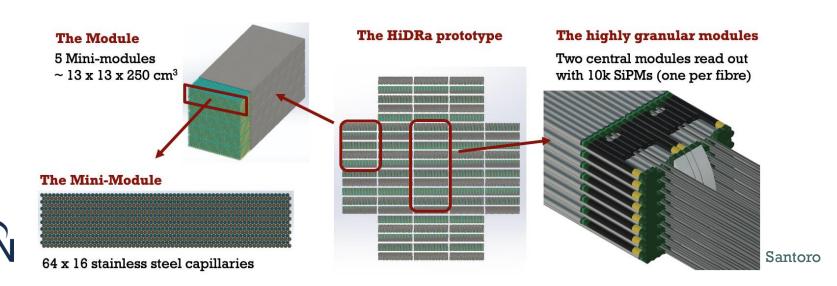


Only modules readout with PMTs

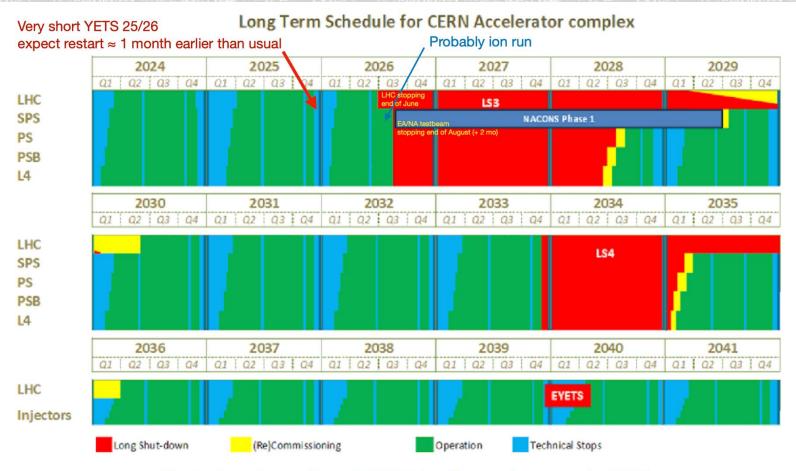
Main Goals of TB2024:

- Test the calibration and equalisation procedure
- EM resolution
- Uniformity response
- Tuning of G4 simulation
- Attenuation length measurement

	3×128	3 mm ²	= 384	1 mm ²	2		
<u> </u>							7
TS55	TC55	TS54	TC54	TS53	TC53	I ♠	- X
TS45	TC45	TS44	TC44	TS43	TC43		87.×7
TS35	TC35	TS34	TC34	TS33	TC33		<u>.</u>
TS25	TC25	TS24	TC24	TS23	TC23		Ċ.
TS16	TC16	TS15	TC15	TS14	TC14		В
TS17	TC17	TS00	TC00	TS13	TC13		mm∠
TS10	TC10	TS11	TC11	TS12	TC12		ľ
TS20	TC20	TS21	TC21	TS22	TC22		- 11
TS30	TC30	TS31	TC31	TS32	TC32		ŝ
TS40	TC40	TS41	TC41	TS42	TC42		339
TS50	TC50	TS51	TC51	TS52	TC52		
TS60	TC60	TS61	TC61	TS62	TC62	I 🕴	mm∽
							Š


Energy shared between minimodules versus impact points of 20 GeV electrons (calibration to be finalised, analysis still ongoing)

TB schedule for 2025 and beyond



- Asked two weeks @ CERN SPS in 2025:
 - Full HiDRa demonstrator (highly granular modules included)
 - Demonstrate the equalization and calibration procedure
 - Assess the calorimetric performances with electrons and hadrons
- In future, we are considering a joint test beam with crystal dual-readout in front

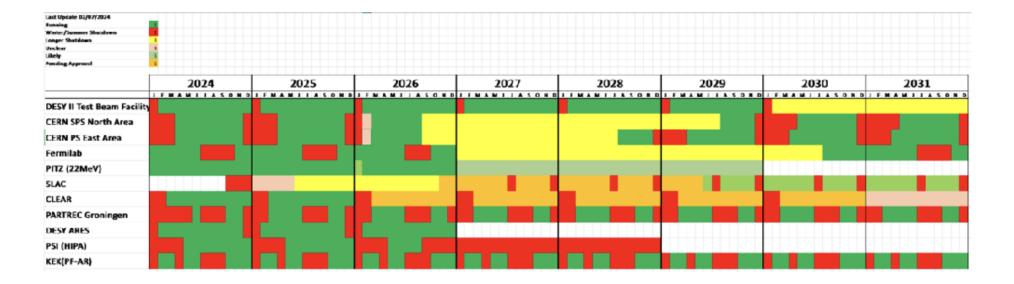
CERN Long Term Schedule (as of Oct. 2024)

Basically \approx 6 months of EA/NA test beam foreseen in 2026

M.R.Jäkel

The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

Martin R. Jäkel (Deputy PS / SPS Physics Coordinator @ CERN)



14

UDIO

International Overview

- CERN dates updated with current schedule
- Dates for Fermilab currently uncertain, might start shutdown in summer 2025 (same end date)

The 2nd FCC Italy & France workshop, Venice, 4-6th Nov-2024

<u>Martin R. Jäkel (Deputy PS / SPS Physics</u> <u>Coordinator @ CERN)</u>

- Sharing beam time could be an interesting option to assess combined performance and to increase the probability of having allocated beam time (parasitic)
 - **\Box** Tracking systems (vertex, wire chambers, μ -RWELL)
 - ECAL + HCAL + tracking
 - Dual Readout (crystal + fibres) + tracking

- Sharing beam time could be an interesting option to assess combined performance and to increase the probability of having allocated beam time (parasitic)
 - **Γ** Tracking systems (vertex, wire chambers, μ-RWELL)
 - ECAL + HCAL + tracking
 - Dual Readout (crystal + fibres) + tracking
- Test beam with the slice of a detector concept: it is probably too early, but it could help to strengthen collaboration and to prepare the infrastructure
 - Shared electronics and DAQ
 - Analysis techniques
 - Simulation Framework

My personal viewpoint

- Almost all R&D programs are included in CERN DRDs. A good opportunity to share ideas and needs, and to identify synergies for new collaborations
- Cross-contamination between detector technologies (in DRDs) and between different DRDs is also important

My personal viewpoint

- Almost all R&D programs are included in CERN DRDs. A good opportunity to share ideas and needs, and to identify synergies for new collaborations
- Cross-contamination between detector technologies (in DRDs) and between different DRDs is also important
- All activities have challenging aspects, are well-structured and leave room for collaboration
 - Personpower is probably the main need: experienced and young collaborators
 - It is a unique opportunity for newcomers (master graduates and PhDs) interested in HW, SW and detector design

My personal viewpoint

- Almost all R&D programs are included in CERN DRDs. A good opportunity to share ideas and needs, and to identify synergies for new collaborations
- Cross-contamination between detector technologies (in DRDs) and between different DRDs is also important
- All activities have challenging aspects, are well-structured and leave room for collaboration
 - Personpower is probably the main need: experienced and young collaborators
 - It is a unique opportunity for newcomers (master graduates and PhDs) interested in HW, SW and detector design
 - Newcomers who are incidentally necessary: we are discussing something that will happen in ≈ 20 years from now

