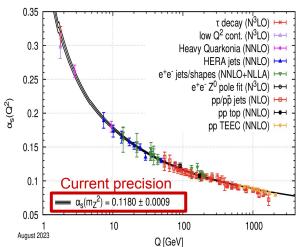
QCD & Lund Jet Plane studies at FCC-ee

L. Panwar (Postdoc), L. Delagrange (PhD),


R.C. Camacho Toro, B. Malaescu, L. Poggioli

2nd FCC Italy & France Workshop

contact email: lata.panwar@cern.ch

Introduction and motivation

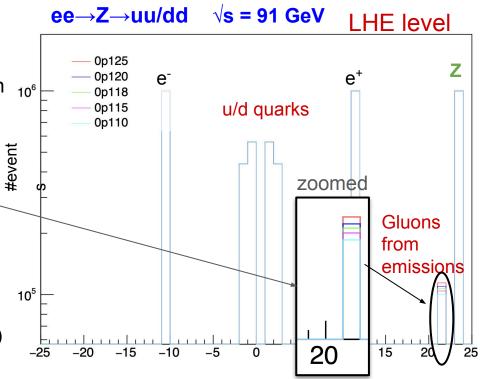
- Analyse prospects of QCD study@FCC-ee using 3/2 Jet cross-section
 (R_{3/2}) study and Lund Jet Plane (LJP) representation
- Aim to study the **sensitivity to** α_s **at FCC-ee**, to probe α_s for different energies (with \sqrt{s} = 91, 240, 365 GeV) and test the Renormalization Group $\frac{\delta_s}{\delta_s}$ Equation (RGE) in QCD
 - \circ α_s impacts both jet multiplicity and jet shape (emissions inside jet)
- Also look for the potential use of LJP for improving jet tagging (gluon jets, b jets) and impact for the optimization of detector parameters @FCC-ee

Why FCC-ee?

- \circ Provides a clean collision environment with high statistics (10⁶ X LEP Data at Z-pole); could bring significant improvement wrt to current α_s -precision
- Both analyses use FCCAnalysis framework along with centrally produced Delphes samples
- Recent LHC measurements focus on Lund Plane density measurement (See backup)

Samples

Use centrally produced Winter2023 Delphes samples for IDEA for both the analyses


LHE level events are generated with Madgraph
 (MG5_aMC@NLO) for ee→Z→ uu/dd at
 √s = 91 GeV

Samples are generated with 5 different α_s
 values: [0.110, 0.115, 0.118) 0.120, 0.125]

• Emitted gluons multiplicity increases with α_s

Events are further simulated with Pythia and
 Delphes generators (using IDEA detector card)

#events = 1 M/sample

Other validation plots are in backup

Jet clustering algorithm

4.5 Generalised k_t algorithm for e^+e^- collisions

FastJet also provides native implementations of clustering algorithms in spherical coordinates (specifically for e^+e^- collisions) along the lines of the original k_t algorithms [24], but extended following the generalised pp algorithm of [14] and section 4.4. We define the two following distances:

$$d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{(1 - \cos \theta_{ij})}{(1 - \cos R)},$$
(9a)

$$d_{iB} = E_i^{2p}, (9b)$$

for a general value of p and R. At a given stage of the clustering sequence, if a d_{ij} is smallest then i and j are recombined, while if a d_{iB} is smallest then i is called an "inclusive jet".

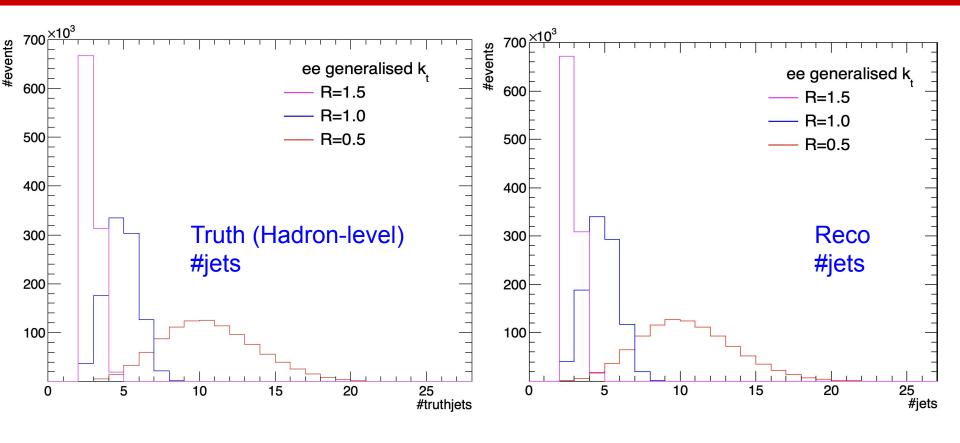
For values of $R \leq \pi$ in eq. (9), the generalised $e^+e^ k_t$ algorithm behaves in analogy with the pp algorithms: when an object is at an angle $\theta_{iX} > R$ from all other objects X then it forms an inclusive jet. With the choice p = -1 this provides a simple, infrared and collinear safe way of obtaining a cone-like algorithm for e^+e^- collisions, since hard well-separated jets have a circular profile on the 3D sphere, with opening half-angle R. To use this form of the algorithm, define

JetDefinition jet_def(ee_genkt_algorithm, R, p);

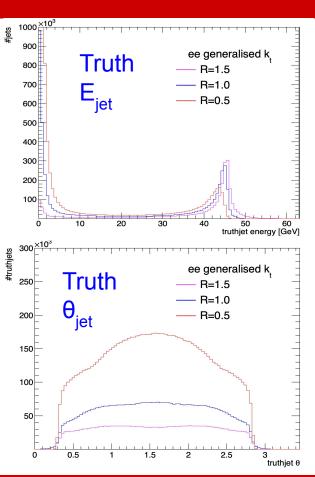
NOTE: Also explored Anti k_t, k_t, C/A, Valencia algorithms for jet clustering

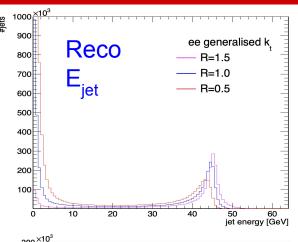
- Use ee Generalised k, (arXiv:1111.6097)
- Input: Jet constituents within θ-region [0.3, π-0.3]; only include particles that are not close to beam
- For truth jet clustering:
 - Final stable particles are used
 - Neutrinos from hadronic decays inside jets are excluded from clustering for better comparison with RECO jets
- muons from pion decay are included

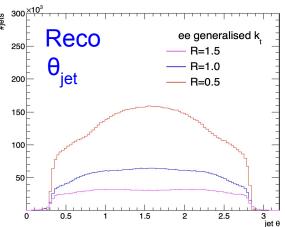
TRUTH Jets (Hadron-level)


```
.Define("StableMCParticles", "FCCAnalyses::MCParticle::sel_genStatus(1)(Particle)")
.Define("StableMCParticles_WithThetaCut", "FCCAnalyses::MCParticle::sel_theta(0.3)(StableMCParticles)")
.Define("FCCAnalysestJets_ee_genkt_R0p5", "JetClustering::clustering_ee_genkt(0.5, 0, 0, 0, -1)(pseudo_MC_jets)")
```

RECO Jets

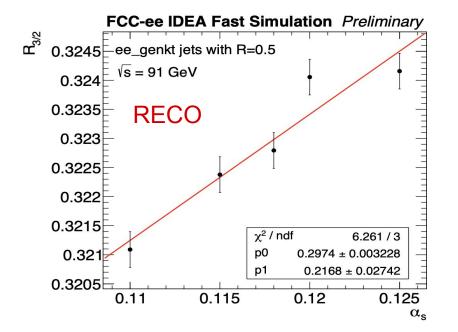

 $. Define ("Reconstructed Particles_With Theta Cut", "Reconstructed Particle::sel_theta(0.3)(Reconstructed Particles)") is a substructed Particles of the part$


.Define("FCCAnalysesJets_ee_genkt_R0p5", "JetClustering::clustering_ee_genkt(0.5, 0, 0, 0, −1)(pseudo_jets)")


Jet multiplicity

Jet reconstruction

For analysis jets should further pass:

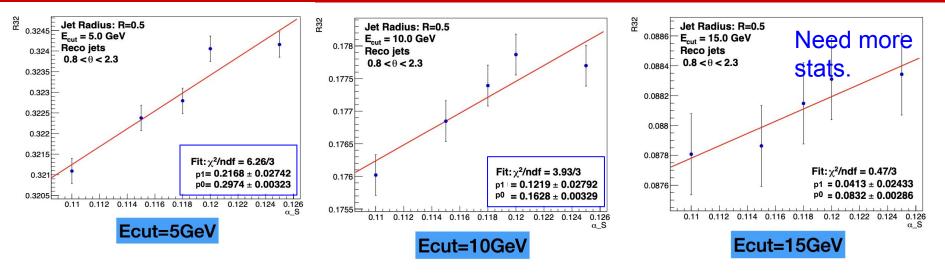

- E_{jet} > 5 GeV
- [0.3+R, π-0.3-R] angular acceptance

NOTE:

- For R=1.5 jet, θ cut is not possible
- Not much stats survive with θ cut for R=0.7, 0.8 and 1.0 jets; will request more stats.
- For now, stick to R=0.5 jets

Study I: R_{3/2} studies

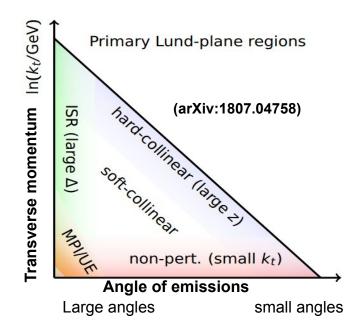
- Study jet cross section ratio between events with at least 3 jets vs 2 jets (α_s) impacts jet multiplicity)
- Observe R_{3/2} dependency on α_s


$$R_{3/2} = \frac{ \text{The number of events with at least 3 jets}}{ \text{The number of events with at least 2 jets}}$$

R=0.5 jets	Variation in R _{3/2}
Truth (Hadron-level)	$(0.21 \pm 0.03) \Delta \alpha_{s}$
Reco	$(0.22 \pm 0.03) \Delta \alpha_{s}$

Note:

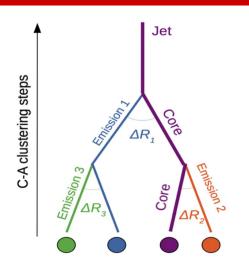
- Error bars represent stat. unc. Only
- See backup s19 for R=0.7,0.8,1.0 jets


Study I: R_{3/2} studies

- E_{iet} > 5 GeV cut was used as the standard, though this cut impacts the jet multiplicity.
- Consequently, analyze the dependence of R_{3/2} on this cut.
 - \circ Dependence of R_{3/2} on $\alpha_{\rm s}$ decreases when comparing E_{jet} > 10 GeV with E_{jet} > 5 GeV.

Study II: Lund Jet Plane studies

- QCD jet formation involves perturbative and non-perturbative effects; presence of these effects impacts the precision of any measurement based on jets
- LJP works as a handle to separate these effects in a 2D representation using angle (ΔR) and transverse momentum (k₁) of emissions within the jets and further opens a possibility to understand QCD behaviour separately for these perturbative and non-perturbative effects



 α_s impacts jet shape (emissions within jets); Average density of emissions in LJP can be given as

$$\rho(k_{\rm T}, \Delta R) \equiv \frac{1}{N_{\rm jets}} \frac{\rm d^2 N_{\rm emissions}}{\rm d \ln(k_{\rm T}/\,GeV) d \ln(R/\Delta R)} \quad \approx \frac{2}{\pi} C_{\rm R} \alpha_{\rm S}(k_{\rm T})$$

Where $C_{R} = \text{color factor}$

How to build Lund Jet Plane?

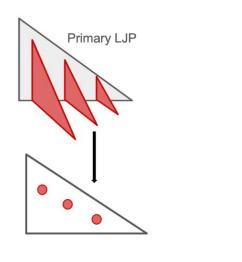
- Start with a jet and cluster it again to have angular order information of emissions (<u>JHEP 12 (2018) 064</u>)
- Decluster them in reverse (start with wide angle emission first)
- Within the iterative declustering, harder branch is always taken as core branch
- Fill a triangular plane of two Lund variables (k_t and ΔR) from core and emission

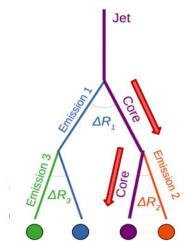
NOTE:

- Angular ordered Cambridge/Aachen (C/A) declustering (following the theoretical proposal) depends on ΔR in (y, φ) plane used for LHC studies (given in backup)
- It is more accurate to perform ΔR -based declustering in the (θ, ϕ) plane for FCC-ee. Therefore, we use EECambridgePlugin algorithm

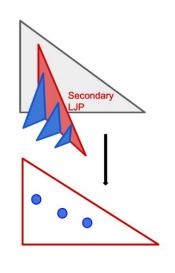
For "a" core and "b" emission branch

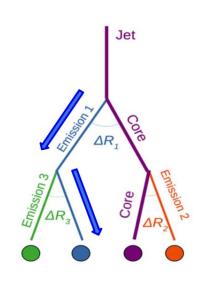
$$k_t \equiv \ \mathbf{p}_{_{ ext{tb}}} \Delta \mathbf{R}_{_{ ext{ab}}} \ z \equiv \ \mathbf{p}_{_{ ext{tb}}} / \left(\mathbf{p}_{_{ ext{ta}}} + \mathbf{p}_{_{ ext{tb}}}
ight)$$

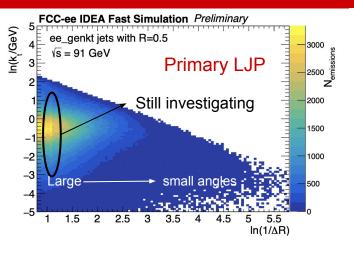

 ΔR_{ab} = angle of emission **b** wrt to core **a** k_t = transverse momentum of **b** wrt **a** z = momentum fraction taken by **b**

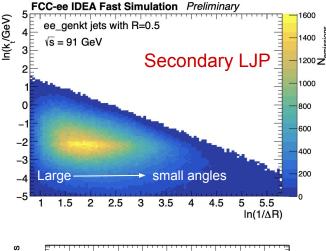

Analysis studies for primary and secondary LJP

 Motivated from following the theoretical proposal [link] which show secondary LJP is mostly gluon induced

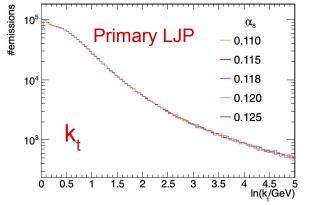

How to build Primary and Secondary Lund Jet Plane?

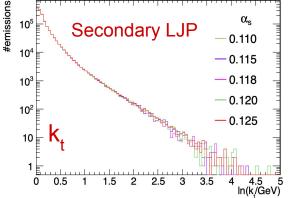

Primary LJP




Secondary LJP

Preliminary look at LJPs: Primary and Secondary LJP

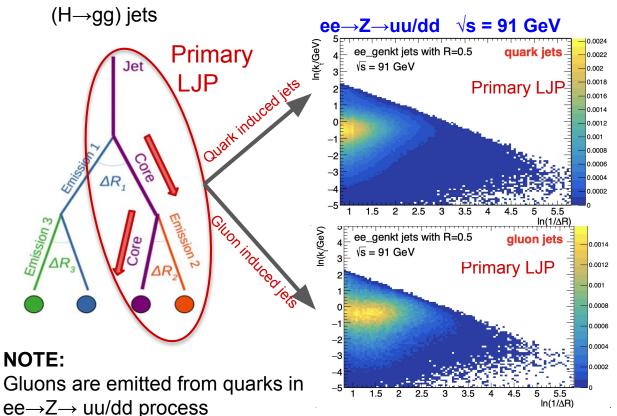


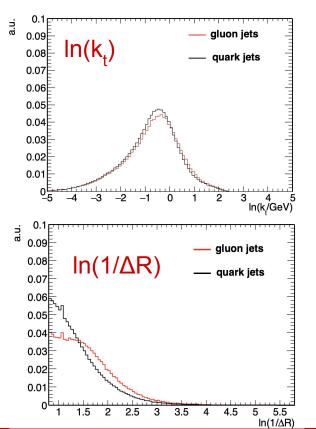


Observe difference for primary and secondary LJPs

Secondary LJP corresponds mostly to gluon emission

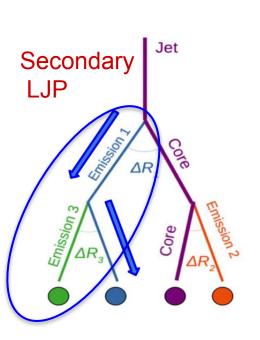
leads towards
 developing jet tagging
 methods using LJP

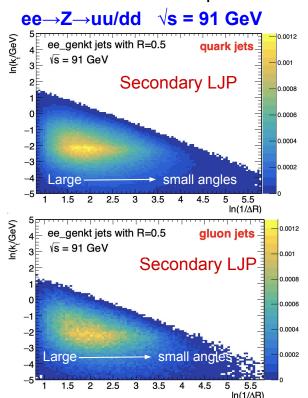


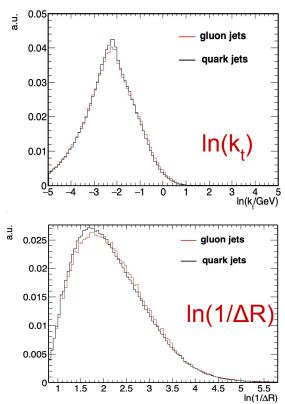

Note:

In(
$$k_t$$
) = -3 \Rightarrow k_t ~ 50 MeV
In(k_t) = -2 \Rightarrow k_t ~ 135 MeV
In(k_t) = -1 \Rightarrow k_t ~ 360 MeV
In(k_t) = 1 \Rightarrow k_t ~ 3 GeV
In(k_t) = 3 \Rightarrow k_t ~ 20 GeV

Potential of jet tagging using LJPs


Primary LJP for quark and gluon-induced jets; will be extended to heavy (Z→bb) vs light flavor





Potential of jet tagging using LJPs

 LJP representation for first emission from quark- and gluon-induced jets; observe similar pattern as expected since first emission corresponds mostly to gluons

Summary and next steps

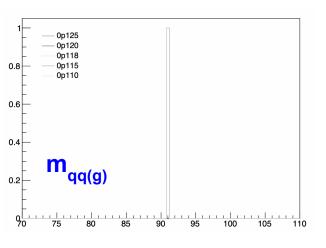
- Present updates of R_{3/2} jet cross section study and Lund Jet Plane studies at FCC-ee
 - Motivated by the study of the sensitivity to α_s and test of RGE

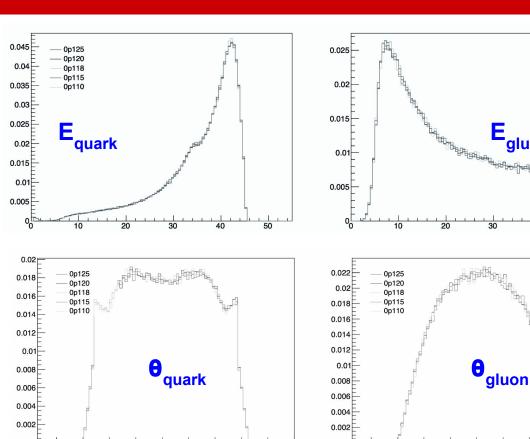
• R_{3/2} study:

- Observe dependency of $R_{3/2}$ on variation of α_s ; will request more stats. to have conclusive results
- Plan to study the same for with different targeted energies at FCC-ee

• LJP Study:

- To our knowledge it is the first study that looks at jet substructure at FCC-ee
- Switch to ee-dedicated algorithm for jet clustering/declustering
- Plan to explore the sensitivity of the reconstructed LJP to:
 - \blacksquare α_s by doing α_s -scan
 - Optimization of the detector parameters
 - Also potential use for jet tagging methods at FCC-ee



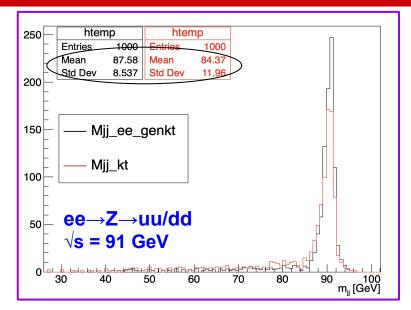

BACKUP

Validation studies:LHE level

• Distributions are shown for different $\alpha_{\rm s}$ values and are shape normalized

No selection at generator level

- 0p125


0p118

0p115

0p110

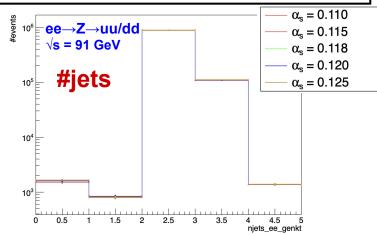
— 0p120

Jet reconstruction with Delphes samples

- Explored various jet reconstruction algorithms
- Better m_{jj} resolution with θ-based ee generalised k_t algorithms with R = 1.5 and p = -1 wrt ΔR(y,φ)-based k_t algorithms
- Jet kinematics distributions are in backup

4.5 Generalised k_t algorithm for e^+e^- collisions <u>arXiv:1111.6097</u>

FastJet also provides native implementations of clustering algorithms in spherical coordinates (specifically for e^+e^- collisions) along the lines of the original k_t algorithms [24], but extended following the generalised pp algorithm of [14] and section 4.4. We define the two following distances:


$$d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{(1 - \cos \theta_{ij})}{(1 - \cos R)},$$
 (9a)

$$d_{iB} = E_i^{2p}, (9b)$$

for a general value of p and R. At a given stage of the clustering sequence, if a d_{ij} is smallest then i and j are recombined, while if a d_{iB} is smallest then i is called an "inclusive jet".

For values of $R \leq \pi$ in eq. (9), the generalised $e^+e^ k_t$ algorithm behaves in analogy with the pp algorithms: when an object is at an angle $\theta_{ex} > R$ from all other objects X then it forms an inclusive jet. With the choice p = -1 this provides a simple, infrared and collinear safe way of obtaining a cone-like algorithm for e^+e^- collisions, since hard well-separated jets have a circular profile on the 3D sphere, with opening half-angle R. To use this form of the algorithm, define

JetDefinition jet_def(ee_genkt_algorithm, R, p);

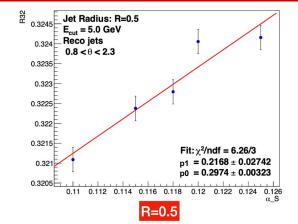
Angular order-based jet declustering in (θ, φ) plane

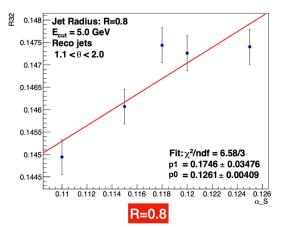
- Use ee-dedicated Cambridge algorithm (EECambridgePlugin); Implemented in code with help from fastjet experts (link)
- Setup is in place

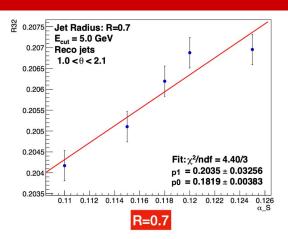
5.4 Plugins for e^+e^- collisions

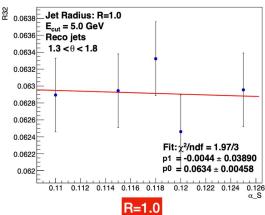
arXiv:1111.6097

5.4.1 Cambridge algorithm

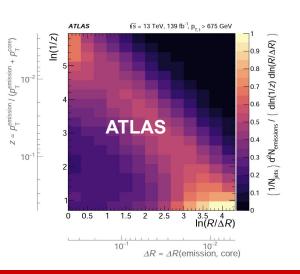

The original e^+e^- Cambridge [22] algorithm is provided as a plugin:

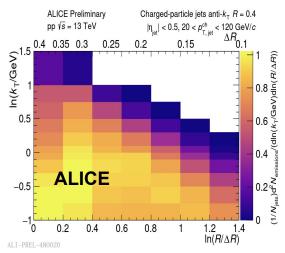

```
#include "fastjet/EECambridgePlugin.hh"
// ...
EECambridgePlugin (double ycut);
```


This algorithms performs sequential recombination of the pair of particles that is closest in angle, except when $y_{ij} = \frac{2\min(E_i^2, E_j^2)}{Q^2}(1 - \cos \theta) > y_{cut}$, in which case the less energetic of i and j is labelled a jet, and the other member of the pair remains free to cluster.

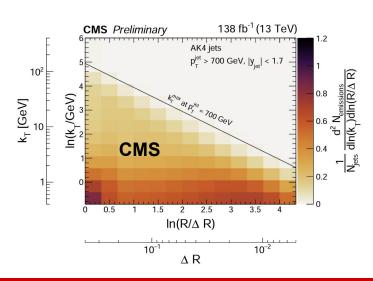

To access the jets, the user should use the $inclusive_jets()$, *i.e.* as they would for the majority of the pp algorithms.

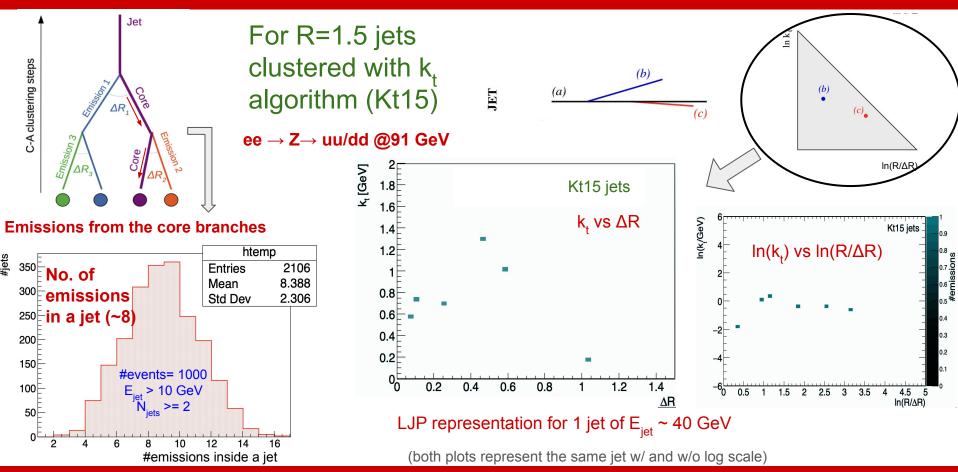
R_{3/2} studies

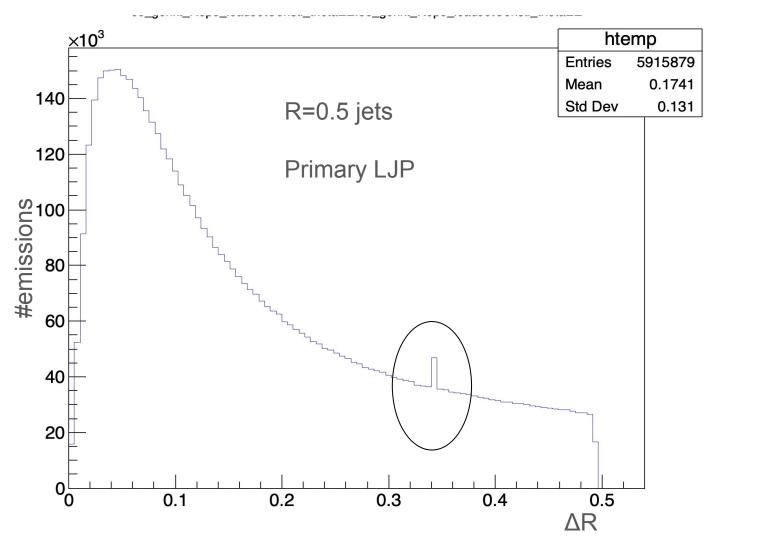



Recent Lund Jet Plane based measurements

- LJP studies at LHC \sqrt{s} = 13 TeV, following recent theoretical proposal (<u>JHEP 12 (2018) 064</u>)
- These studies measure the lund plane density for charged particles jets
- We are interested in following the same for FCC-ee environment


arXiv 2004.03540


arXiv 2111.00020



CMS-PAS-SMP-22-007

How to build Primary Lund Jet Plane?

