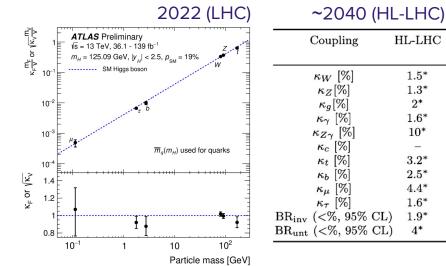
Measurement of hadronic Higgs boson decays at FCC-ee

Alexis Maloizel George lakovidis Giovanni Marchiori Michele Selvaggi Jan Eysermans Loukas Gouskos

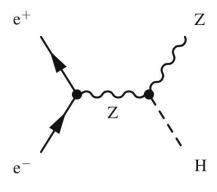
2nd FCC Italy & France Workshop


Motivations

Measurement of **Higgs couplings** to quarks and gluons at FCC-ee

Yukawa coupling

Deviation from SM \rightarrow Possible BSM physics



Fully hadronic represents 80% of the Higgs decays

Higgs decay	H→bb	H→WW/ZZ	H→gg	Н→сс	H→ss	(Н→тт)	
BR	57.7%	11%	8.6%	2.9%	0.024%	(6.2%)	
c	only one observed to this day	þ	Obs	ervable a	at FCC-ee	2	
				Also po decays		future c	observation of Flavour-violating

Overview

ZH (Higgstrahlung)

Z decay channels

Z→II, I = e,µ Z→qq Z→vv √S & Luminosities (full program)

240 GeV → 10.8ab-1 365 GeV → 3.0ab-1

Samples IDEA (Delphes fast sim)

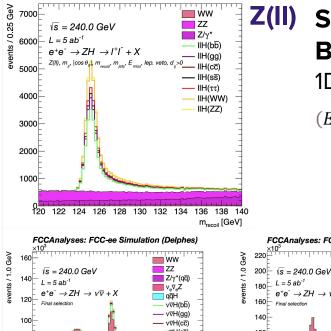
signals ZH - H \rightarrow bb/cc/gg/ss/WW/ZZ/ $\tau\tau$ N = 2 exclusive kT clustering for Z(II/ $\nu\nu$)**, N = 4 for Z(qq) backgrounds WW, ZZ, Z/ γ *, Zqq, ee, µµ, tt, $\nu\nu$ Z, qqH

- Orthogonal selection to separate all Z decay channels (II, qq, vv)
- S/B optimization with **cuts** on H dijets and Z decay pairs
 - $\circ \quad \text{cuts on E}_{\text{jets}}, \text{E}_{\text{miss}}, \text{p}_{\text{leptons}}, \text{lcos(theta}_{\text{II/qq}})\text{l}, \text{m}_{\text{II/qq}}, ...$
- **Categorization** of events in relation to their tagged Higgs decay (b,c,g,s,W,Z,τ)
 - \circ ~ categorization using Jet Tagger scores + jet properties
- Simultaneous fit on all categories assuming tagging efficiencies

** We also force reconstruction of H(WW/ZZ) to be 2 jets (rather than the expected 4) 2nd FCC Italy & France Workshop - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

Outline

Analysis I


ZH→IIjj/ννjj at 240 & 365 GeV (APC) jj = bb,cc,gg,ss,WW,ZZ,ττ Analysis II

ZH→qqjj/*vv*jj at **240** & **365** GeV (BNL)

Combination of the studies

$ZH \rightarrow II j/vv j at 240 GeV$

FCCAnalyses: FCC-ee Simulation (Delphes)

Signals: Z(II)H(bb/cc/qg/ss/WW/ZZ/ττ) **Backgrounds:** WW, ZZ, Z/y*, Zgg, ee, mumu 1D Study of the mass recoiling from the Z $(E_{ll} + E_H, \overrightarrow{p_{ll}} + \overrightarrow{p_H}) = (\sqrt{s}, \overrightarrow{0}) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$ 7 H $Z(\nu\nu)$ FCCAnalyses: FCC-ee Simulation (Delphes) ww ZZ

____ν_Z $\rightarrow ZH \rightarrow V\overline{V} + X$ agh v⊽H(ss 120F 80 ν⊽Η(ττ' 100 v⊽H(WW) v⊽H(ZZ 60 80F 60F 40 40[–] 20 20 50 70 80 90 100 110 70 60 120 130 80 90 100 110 120 130 140 mmiss [GeV] mvisible [GeV]

Signals: Z(*vv*)H(bb/cc/gg/ss/WW/ZZ/ττ) Backgrounds: WW, ZZ, vvZ, Zqq, qqH 2D Study of the mass recoiling from the H + visible mass from **H decay**

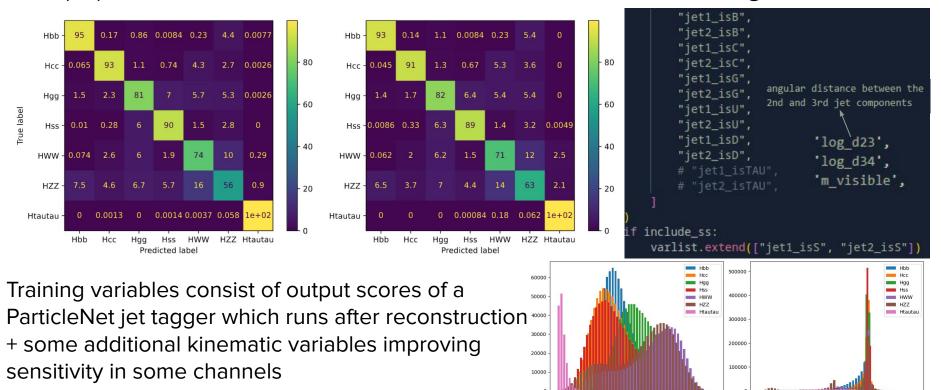
$$m_{miss}(=m_{vv}) = m_{recoil}$$

 $m_{visible}^{}=m_{jj}$

Z/γ*(qā)

Events categorization - 240 GeV

We train a Neural Network to categorize the events in each signal channels

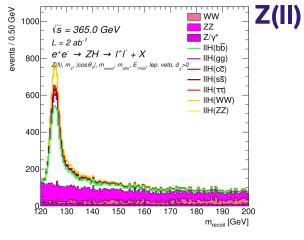

Z(II) Confusion Matrix

Training variables

[•]m_{visible} (normalized)

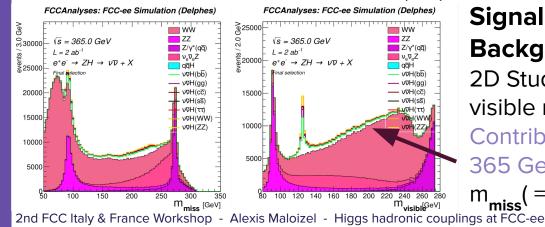
6

Z(vv) Confusion Matrix


 $\log(d_{23}^{0.6})$ (normalized)

0.0 0.2

ZH→IIjj/vvjj at 365 GeV


changes compared to 240 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

Signals: Z(II)H(bb/cc/gg/ss/WW/ZZ/ $\tau\tau$) **Backgrounds:** WW, ZZ, Z/ γ^* , Zqq, ee, mumu, tt 1D Study of the mass recoiling from the **Z** $(E_{ll} + E_H, \vec{p}_{ll} + \vec{p}_H) = (\sqrt{s}, \vec{0}) \Rightarrow M_{recoil}^2 = s + m_Z^2 - 2E_{ll}\sqrt{s}$ e^-

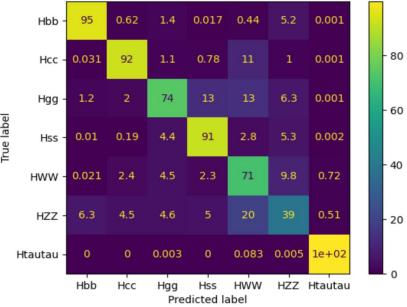
Ζ(νν)

Signals: Z(*vv*)H(bb/cc/gg/ss/WW/ZZ/*ττ*) **Backgrounds:** WW, ZZ, *vv*Z, Zqq, qqH, tt 2D Study of the mass recoiling from the **H** + visible mass from **H decay**

Contribution from **VBF** non-negligible at 365 GeV

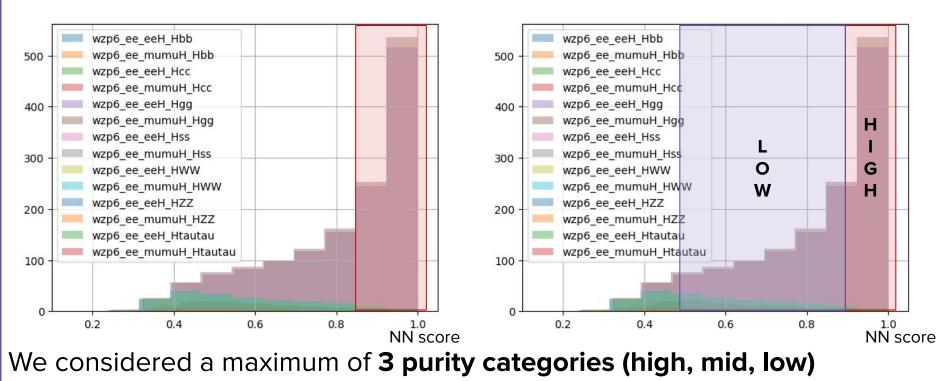
 $m_{miss}(=m_{vv})=m$

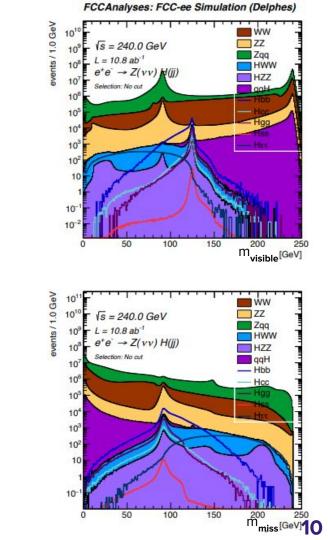
m = m visible ii


Categorization - 365 GeV

Z(vv) Confusion Matrix

Same training variables and strategy as for 240GeV


0.0045 0.11 0.004 95 98 0.18 0.57 Hbb Hbb 80 5.3 1.9 Hcc 0.2 94 1.6 0.53 0.006 Hcc -2.2 6.1 4.5 0.005 Hgg 84 Hgg -- 60 True label True label 0.38 9.4 2.4 3.5 0.017 Hss -0.065 87 Hss 40 5.1 8.1 0.077 0.29 59 HWW -HWW 9.4 6.1 7.2 0.3 HZZ 8.3 9.4 HZZ - 20 0.044 Htautau - 0.0035 0.003 1e+02 Htautau 0 0.001 0 Hbb Hcc HZZ Htautau Hgg Hss HWW Predicted label


Z(II) Confusion Matrix

Purity categorization - 240 & 365 GeV

Goal : increase analysis sensitivity by including purity categories in the samples after

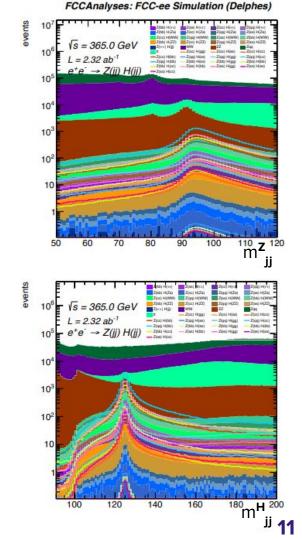
ZH→vvjj at 240 & 365 GeV (BNL)

Signals: $Z(\nu\nu)H(bb/cc/gg/ss/WW/ZZ/\tau\tau)$ **Backgrounds:** WW, ZZ, Z/ γ^* , Zqq, $\nu\nu$ Z 2D Study of the mass recoiling from the **H** + visible mass from **H decay**

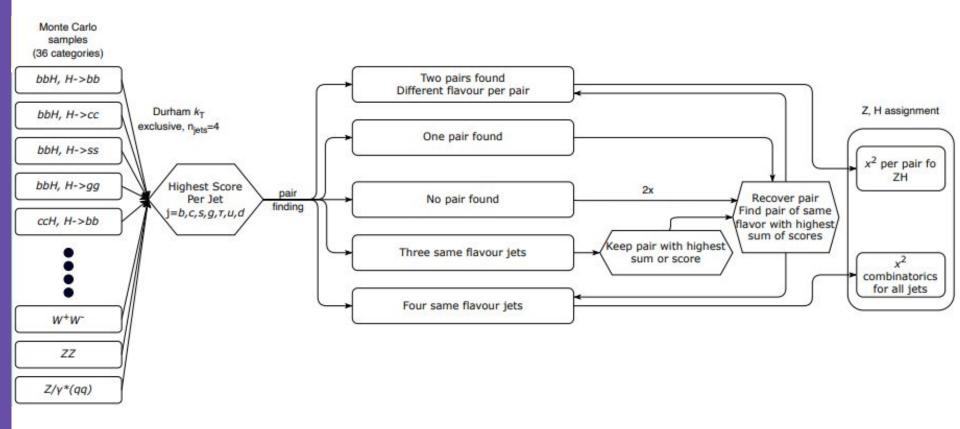
 $m_{miss}(=m_{\nu\nu})=m_{recoil}$

m_{visible} = m_{jj}

Categorization of jets using the same ParticleNet jet tagger scores as previous analysis (different method)


Events selection orthogonal to ZII analysis

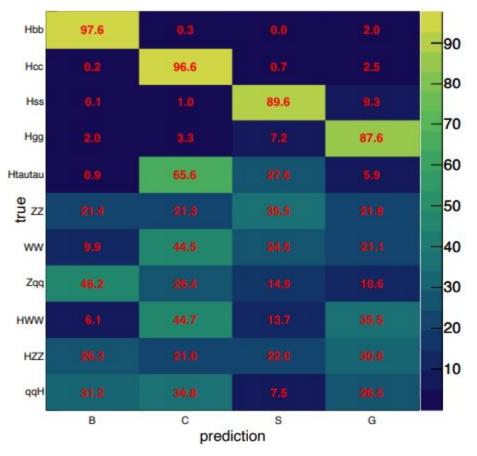
ZH→qqjj at 240 & 365 GeV


Signals: Z(qq)H(bb/cc/gg/ss/WW/ZZ/ $\tau\tau$) **Backgrounds:** WW, ZZ, Z/ γ^* , Zqq, $\nu\nu$ Z 2D Study of the both hadronic masses from the **H** and **Z** $m_{H}^{=} m_{jj}^{H} m_{z}^{=} m_{jj}^{z}$

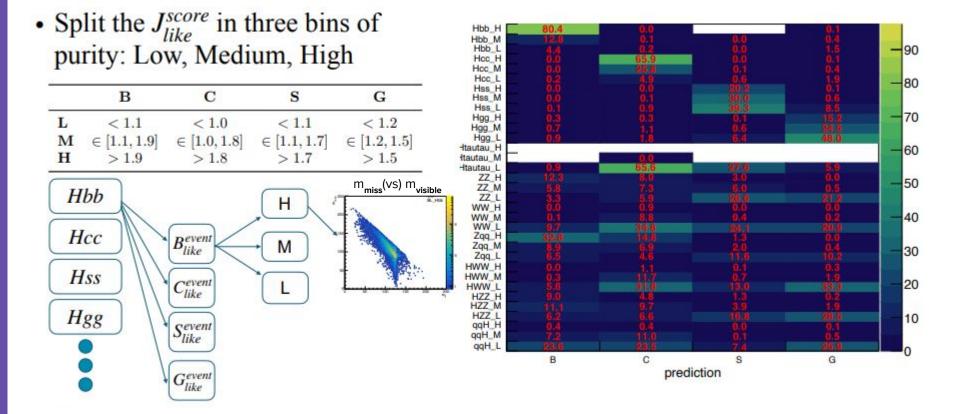
Categorization of jets using the same ParticleNet jet tagger scores as previous analysis (different method)

Events selection orthogonal to $Z(II)/Z(\nu\nu)$ analysis **Jet Pairing** based on tagger scores & combinatorics

Jet pairs reconstruction for Z(qq)H(jj)



Categorization for Z(qq) and Z(vv) - Score Map


Events are categorised from the sum of the two jets score

$$\forall \text{ event: } J_{12}^{score} = J_1^{score} + J_2^{score}, J = b, c, s, g$$
eg. if: $J_1^{score} = b \& J_2^{score} = b \implies B_{like}^{score}$
if $B_{like}^{score} > C_{like}^{score} > S_{like}^{score} G_{like}^{score} \implies B_{like}^{event}$

Events are further divided in 3 categories based on their *Score Like* value

Categorization for Z(qq) and Z(vv) - Purity categories

Results - Combination at 240 GeV

Fitting using CMS tool CombineTF to extract σ .BR in each category

Monte Carlo stats uncertainties

No systematics on the backgrounds

Expected sensitivity (%) of σ (ZH).BR(H \rightarrow jj) at 68% CL

L = 10.8ab-1

240 GeV	H→bb	H→cc	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Z→II	0.68	4.02	2.18	234	13.66	1.78	4.08
Z→qq	0.32	3.52	3.07	408.55	52.08	8.74	110.73
Z <i>→vv</i> (BNL)	0.33	2.27	0.94	137	19.84	1.89	21.76
Ζ→νν (ΑΡC)	0.36	2.18	1.10	151	15.29	1.51	11
Combined (BNL)	0.21	1.66	0.8	104.99	10.07	1.16	3.97
Combined (APC)	0.22	1.65	0.93	121	9.56	1.11	3.79

Results - Combination at 365 GeV

Fitting using CMS tool CombineTF to extract σ .BR in each category

Monte Carlo stats uncertainties

No systematics on the backgrounds

Expected sensitivity (%) of σ (ZH).BR(H \rightarrow jj) at 68% CL L = 3.0ab-1

365 GeV	H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Z→II	1.74	11.29	5.74	1169	44	5.61	13.15
Z→qq	0.65	3.87	2.48	305			
Z→vv (BNL)	0.78	4.55	2.93	460	52.8	4.15	128
Z→vv (APC)	1.09	5.53	3.17		28.23	3.88	19

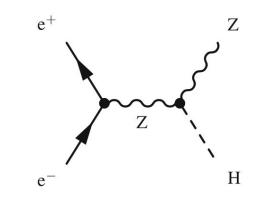
Conclusion & prospects

Promising results at % **level** in some categories

Achieved full combination at **240 GeV**. Combination at **365 GeV** is **WIP** Need to **disentangle VBF** from **ZH** and extract couplings from the fit (WIP) Include **Flavour-Violating** and **uu/dd** Higgs decay channels

Submitted results to ECFA paper and France Strategy symposium

Expected sensitivity (%) of σ (ZH).BR(H \rightarrow jj) at 68% CL L = 10.8ab-1

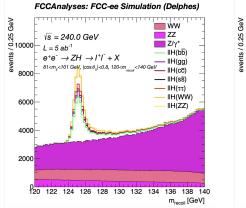

240 GeV	H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Combined (BNL)	0.21	1.66	0.8	104.99	10.07	1.16	3.97
Combined (APC)	0.22	1.65	0.93	121	9.56	1.11	3.79

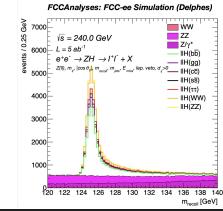
Thank you

Big thanks to : George lakovidis and Giovanni Marchiori, Jan Eysermans and Michele Selvaggi

(ZH) Higgstrahlung process - Recoil Mass

•
$$e^+ + e^- \rightarrow Z + H$$


Recoil Mass :


 $(E_{ll}+E_H,\overrightarrow{p_{ll}}+\overrightarrow{p_H})=\left(\sqrt{s},\overrightarrow{0}\right) \Rightarrow M^2_{recoil}=s+m^2_Z-2E_{ll}\sqrt{s}$

- Allows model independent measurement of the total Higgs Cross-section
- Unusable in the LHC due to the composite nature of protons

Cutflows - 240 GeV

S/B optimized with **selections** on leptons and jets kinematic properties

L		
4		

Cut	ZHbb		ZHcc		ZHqq		ZHss		ZHWW		ZHZZ		ZHtautau		ZZ		WW		zเเ		Zqq	
	Yigld	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff										
No cuts	40 55		2013		5700		17		14985		1838		4367		6794950		82192500		67965000		263269500	
one Z->ll candidate	36448	90	1808	90	5119	90	15	90	13571	91	1664	91	3956	91	566449	8	772157	1	13389259	20	141045	0
m(ll) 81-101 GeV	32793	90	1627	90	4605	90	14	90	12151	90	1502	90	3547	90	363333	64	190171	25	5677860	42	7530	5
<pre> cos(theta_ll) <0.8</pre>	26694	81	1327	82	3746	81	11	81	9889	81	1223	81	2884	81	227312	63	145268	76	906114	16	5550	74
m(recoil) 120-140 GeV	25497	96	1268	96	3580	96	11	96	9408	95	1154	94	2743	95	32182	14	61912	43	206164	23	1079	19
max p(extra lep) < 25 GeV	24318	95	1256	99	3577	100	11	100	6912	73	1040	90	2031	74	28850	90	61825	100	206163	100	977	91
l=e	11950		616		1754		5		3386		510		998		14481		31880		171906		466	
l=mu	12368		640		1823		5		3526		530		1033		14369		29945		34258		511	

Ζνν

Cut	vvHbb		vvHcc		vvHgg		vvHss		VVHWW		vvHZZ		vvHtautau->		qqH		nuenueZ		Zqq		WW		ZZ	
	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield->	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff
No cuts	134500		6675		18910		55		49700		6100		14485 ->		681520		166370		263269500		82192500		6794950	
No leptons with p>20 GeV	123364	92	6531	98	18877	100	55	100	34142	69	5335	87	-> <u>\$</u> 9824	68	580210	85	152109	91	254437693	97	49001192	60	5299230	78
15 <e_j1<105, 10<e_j2<70="" gev<="" td=""><td>122075</td><td>99</td><td>6439</td><td>99</td><td>18501</td><td>98</td><td>54</td><td>98</td><td>32873</td><td>96</td><td>4922</td><td>92</td><td>7801-></td><td>79</td><td>16777</td><td>3</td><td>147609</td><td>97</td><td>109466219</td><td>43</td><td>6515777</td><td>13</td><td>1811708</td><td>34</td></e_j1<105,>	122075	99	6439	99	18501	98	54	98	32873	96	4922	92	7801->	79	16777	3	147609	97	109466219	43	6515777	13	1811708	34
<pre> cos(theta_jj) <0.9</pre>	110401	90	5824	90	16754	91	49	90	29563	90	4226	86	6496 ->	83	14859	89	92878	63	2556074	2	4698934	72	1312817	72
cos(th_j1+th_j2)>0.5	110014	100	5806	100	16648	99	49	100	28351	96	4025	95	6441->	1 99 jh	14725	99	80799	87	2508454	98	3787830	81	1035917	79
cos(phi_j1-phi_j2)<0.999	106539	97	5623	97	16165	97	48	97	27633	97	3919	97	-> 16200u	96	14169	96	78719	97	2045260	82	3698506	98	1014048	98
70 <mvis<150, 60<mmiss<220="" gev<="" td=""><td>105661</td><td>99</td><td>5555</td><td>99</td><td>15955</td><td>99</td><td>47</td><td>99</td><td>27094</td><td>98</td><td>3792</td><td>97</td><td>6165 -></td><td>99</td><td>13083</td><td>92</td><td>77045</td><td>98</td><td>2039752</td><td>100</td><td>2846585</td><td>77</td><td>974735</td><td>96</td></mvis<150,>	105661	99	5555	99	15955	99	47	99	27094	98	3792	97	6165 ->	99	13083	92	77045	98	2039752	100	2846585	77	974735	96
d23>0, d34>0	105661	100	5555	100	15955	100	47	100	27078	100	3787	100	5896 ->	196	13083	100	76961	100	2039516	100	2829867	99	973642	100
All cuts	105661	100	5555	100	15955	100	47	100	27078	100	3787	100	5896 ->	100h	13083	100	76961	100	2039516	100	2829867	100	973642	100
Efficiency (%)	vvHbb	vvHcc	vvHgg	g ı	vvHss v	vHWW	VVHZZ VVH	Itautau	qqH	nuenuez		Zqq	WW ->	miZZ										
	78.56	83.23	84.3	B	84.52 5	4.48	62.09	40.70	1.92	46.26	5 0	.77	3.44 ->1	14.33										
Eff. in ZH(other) channels wrt ha	d decays (%)	W			utau																		
			83.6	5 8	82.51 7	7.83																		

Cutflows Zqq - 240 GeV

	Lepton cut	$M_{ m vis}, heta_{ m vis}$	d_{ij}		Lepton cut	$M_{ m vis}, heta_{ m vis}$	d_{ij}
$\rightarrow Z(cc)H(gg)$	98.7	88.3	87.2	$e^+e^- \rightarrow Z(bb)H(\tau\tau)$	63.7	43.9	32.8
$\rightarrow Z(cc)H(ss)$	99.0	88.4	86.3	$e^+e^- \rightarrow Z(ss)H(\tau\tau)$	67.1	48.3	36.4
$\rightarrow Z(cc)H(cc)$	96.6	88.1	86.1	$e^+e^- \rightarrow Z(cc)H(\tau\tau)$	68.0	50.2	38.1
$\rightarrow Z(cc)H(bb)$	89.7	83.5	81.2	$e^+e^- \rightarrow Z(qq)H(\tau\tau)$	67.9	50.1	38.1
$\rightarrow Z(qq)H(gg)$	99.8	86.2	85.2	$e^+e^- \rightarrow Z(bb)H(Z\gamma)$	86.5	62.4	61.3
$\rightarrow Z(qq)H(ss)$	99.9	86.6	84.6	$e^+e^- \rightarrow Z(ss)H(Z\gamma)$	90.5	64.0	62.9
$\rightarrow Z(qq)H(cc)$	97.8	87.1	85.2	$e^+e^- \rightarrow Z(cc)H(Z\gamma)$	91.7	63.7	62.5
$\rightarrow Z(qq)H(bb)$	91.4	83.8	81.7	$e^+e^- \rightarrow Z(qq)H(Z\gamma)$	91.6	63.1	61.9
$\rightarrow Z(bb)H(gg)$	94.6	87.0	85.9				
$\rightarrow Z(bb)H(ss)$	95.0	87.3	85.1	$e^+e^- \rightarrow Z(bb)H(WW)$	64.7	57.4	54.6
$\rightarrow Z(bb)H(cc)$	92.1	85.7	83.4	$e^+e^- \rightarrow Z(ss)H(WW)$	68.0	59.8	57.0
$\rightarrow Z(bb)H(bb)$	84.4	79.8	77.3	$e^+e^- \rightarrow Z(cc)H(WW)$	68.7	59.9	57.0
$\rightarrow Z(ss)H(gg)$	99.8	87.0	85.9	$e^+e^- \rightarrow Z(qq)H(WW)$	68.6	59.4	56.6
$\rightarrow Z(ss)H(ss)$	99.9	87.2	85.2	$e^+e^- \rightarrow Z(bb)H(ZZ)$	81.8	60.6	57.8
$\rightarrow Z(ss)H(cc)$	97.8	87.7	85.7	$e^+e^- \rightarrow Z(ss)H(ZZ)$	86.1	63.3	60.5
$\rightarrow Z(ss)H(bb)$	91.3	84.1	82.0	$e^+e^- \rightarrow Z(cc)H(ZZ)$	87.5	63.9	61.1
event				$e^+e^- \rightarrow Z(qq)H(ZZ)$	87.5	63.6	60.8
				$e^+e^- \rightarrow Z(\nu\nu)H(jj)$	87.5	00.1	00.0
				$e^+e^- \rightarrow W^+W^-$	64.1	45.1	37.9
				$e^+e^- \rightarrow ZZ$	79.8	43.4	38.1
				$e^+e^- \to Z/\gamma^*(q\bar{q})$	96.5	31.8	07.6

• Events (orthogonal to $ll, \nu\nu$ analysis)

- $n_i = 4$ per event
- · Cuts on leptons
- lepton (both e, μ) $p_l < 20 \text{ GeV } \& n_{e,\mu} \le \overline{2} \text{ per ev}$
- Cuts on $m_{\rm vis}, \theta_{\rm vis}$
 - $m_{\rm vis} > 150 \,{\rm GeV}$,
 - $0.15 < \theta_{vis} < 3$
- Clustering merging parameter cut (d_{12}, d_{23}, d_{34})
- χ^2 on the energy correction <30
- · On the jet pairs

• Pairs: Find minimum $(m_{j_1j_2} - m_Z)^2 + (m_{j_3j_4} - m_H)^2$ for all jet combination $\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10, \sqrt{(m_{z_{jj}} - m_Z)^2 + (m_{H_{jj}} - m_Z)^2} > 10, ZZ, WW$ rejection

 $e^{+}e^{-}$ $e^+e^$ $e^{+}e^{-}$. $e^{+}e^{-}$ $e^+e^$ $e^+e^$ $e^{+}e^{-}$. $e^+e^$ $e^+e^$ $e^{+}e^{-}$. $e^{+}e^{-}$ $e^{+}e^{-}$.

 $e^{+}e^{-}$. e^+e^-

 e^+e^-

 $e^{+}e^{-}$ -

* 50 < $m_{Z_{jj}}$ < 125 GeV, $m_{H_{jj}}$ > 91 GeV 2nd FCC Italy & France Workshop - Alexis Maloizel - Higgs hadronic couplings at FCC-ee

Cutflows - 365 GeV ZII

Cut	ZHbb		ZHcc		ZHgg		ZHss		ZHWW		ZH	IZZ		ZHtautau		ZZ		WW		tt		zll		Zqq	
	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yie	eld E	ff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff
No cuts	15504		770		2179				5729			703		1670		1478440		24647950		1840000		8769440		49254270	
>0 iso-leptons with p>40 GeV	15267	98	758	98	2146	98		98	5656	99	6	593	99	1648	99	273844	19	9077163	37	467641	25	7187002	82	54598	
one Z->ll candidate	14194	93	702	93	1986	93		93	5275	93	6	547	93	1539	93	200127	73	562743		69355		4590047	64	39609	73
m(ll) 81-101 GeV	9421	66	464	66	1309	66		66	3507	66	4	38	68	1027		123438	62	48867		9046	13	2165561	47	25	
<pre> cos(theta_ll) <0.8</pre>	8028	85	397	86	1122	86		86	2981	85	3	373	85	871	85	54684	44	26214	54	7292	81	245000	11		
m(recoil) 1202200 GeV	7276	91	362	91	1025	91		91	2688	90	3	328	88	783	90	13233	24	6635	25	323		33794	14		
E(j2)>15 GeV	7255	100	361	100	1025	100		100	2555	95		299	91	597	76	12496	94	6173	93	320	99	24013	71		
<=2 iso leptons	6685	92	357	99	1018	99		100	1618	63		244	82	307		11109	89	6138	99	297	93	24013	100		
d23>0, d34>0	6685	100	357	100	1018	100		100	1616	100		232	95	296	97	9126	82	2992	49	297	100	1597			
All cuts	6685	100	357	100	1018	100		100	1616	100		232 1	100	296	100	9126	100	2992	100	297	100	1597	100		
l=e	3289		176		501				795			14		146		4699		1564		150		1201			
l=mu	3396		182		518				821			18		150		4427		1428		147		396			
H->had	6685		357		1018				1227			153		284		9126		2992		297		1597			
H->oth									388			79		12											
Efficiency (%)	ZHbb	ZHcc	ZHgg	ZН	lss Z	HWW	ZHZZ Z	Htautau	zz		WW	tt		zu	Zqq										
	43.11	46.41	46.73			.21	33.07	17.73	0.62		.01	0.02		0.02	0.00										
ref in a channel (M)	ZHbb	71100	711	71	laa 71	111-0-1	71177 7				WW			zเเ	7										
Eff. in e channel (%)	33.23	ZHcc 35.75	ZHgg 35.98			HWW .73	ZHZZ Z 25.49	Htautau 13.73	ZZ 0.50		.01	tt 0.01		0.02	Zqq 0.00										
	00120	55115	00100				20110	20110	0.00			0.03	•	0.01											
Eff. in mu channel (%)	ZHbb	ZHcc	ZHgg	ZH	lss Z	HWW	ZHZZ Z	Htautau	zz		WW	tt		zll	Zqq										
	60.56	65.22	65.70			.64	46.46	24.78	0.83		.02	0.02		0.01	0.00										
Eff. in ZH(other) channels wrt ha	nd decays (%)	WW		ZZ tau																				
			47.25	44.	66 40	.61																			

Ζνν

Cut	vvHbb		vvHcc		vvHgg		vvHss		v∨HWW		vvHZZ		vvHtautau		qqH		nuenueZ		Zqq		WW		ZZ		tt	
	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff	Yield	Eff
No cuts	72289		3588		10161		25		26703		3278		7786		193598		290352		49254270		24647950		1478440		1840000	
No iso-leptons with p>1 GeV	65969	91	3542	99	10084	99		100	15832	59	2637	80	3529	45	157565		260263	90	49030812	100	14344054	58	1110069		1005183	
15 <e_j1<105, 10<e_j2<70="" gev<="" td=""><td>65513</td><td>99</td><td>3516</td><td>99</td><td>10022</td><td>99</td><td>25</td><td>99</td><td>15219</td><td>96</td><td>2203</td><td>84</td><td>2747</td><td>78</td><td>6062</td><td></td><td>252989</td><td>97</td><td>25162964</td><td></td><td>2071904</td><td>14</td><td>385816</td><td>35</td><td>59129</td><td></td></e_j1<105,>	65513	99	3516	99	10022	99	25	99	15219	96	2203	84	2747	78	6062		252989	97	25162964		2071904	14	385816	35	59129	
<pre> cos(theta_jj) <0.9</pre>	57369	88	3075	87	8763		21		13360	88	1833	83	2352	86	3228	53	153878	61	92360		764404		199914	52	53118	90
cos(th_j1+th_j2)>0.5	47080	82	2522	82	6987	80	18	82	10109	76	1418	77	1954	83	3026	94	115310		91375	99	642857	84	108146	54	51379	
cos(phi_j1-phi_j2)<0.999	46134	98	2470	98	6849	98	17	98	9910	98	1390	98	1906	98	2696	89	112847	98	68069	74	611088	95	104804	97	49618	97
80 <mvis<280, 50<mmiss<350="" gev<="" td=""><td>46072</td><td>100</td><td>2465</td><td>100</td><td>6831</td><td>100</td><td>17</td><td>100</td><td>9793</td><td>99</td><td>1368</td><td>98</td><td>1903</td><td>100</td><td>2507</td><td>93</td><td>112637</td><td>100</td><td>68028</td><td>100</td><td>545504</td><td>89</td><td>100107</td><td>96</td><td>47041</td><td>95</td></mvis<280,>	46072	100	2465	100	6831	100	17	100	9793	99	1368	98	1903	100	2507	93	112637	100	68028	100	545504	89	100107	96	47041	95
d23>0, d34>0	46072	100	2465	100	6831	100	17	100	9792	100	1368	100	1857	98	2507	100	112610	100	68012	100	543308	100	100054	100	47041	100
All cuts	46072	100	2465	100	6831	100	17	100	9792	100	1368	100	1857	100	2507	100	112610	100	68012	100	543308	100	100054	100	47041	100
H->had	46072		2465		6831		17		7817		992		1825		853		112610		68012		543308		100054		47041	
H->oth									1975		376		33		1654											
Efficiency (%)	vvHbb	vvHcc	vvHg	g v	vHss v	∨HWW	vvHZZ vv	Htautau	qqH	nuenueZ		Zqq	WW	zz	tt											
	63.73	68.69	67.2	26	9.38 3	6.67	41.73	23.86	1.29	38.78	Θ	.14	2.20	6.77	2.56											
Eff. in ZH(other) channels wrt h	nad decays	(%)	w	W	ZZ ta	utau																				
			64.4	8 6	1.88 5	5.80																				

Cutflows - 365 GeV

	Lepton cut	$M_{\rm vis}, E_{\rm vis}, \theta_{\rm vis}$	d_{ij}	χ^2		Lepton cut	$M_{\rm vis}, \theta_{\rm vis}$	dij	χ^2
$^+e^- \rightarrow Z(cc)H(gg)$	95.1	75.3	74.7	72.2	$e^+e^- \rightarrow Z(bb)H(\tau\tau)$	55.2	49.5	42.5	19.6
$^+e^- \rightarrow Z(cc)H(ss)$	95.6	76.0	75.3	73.0	$e^+e^- \rightarrow Z(ss)H(\tau\tau)$	61.1	55.6	47.4	22.4
$^+e^- \rightarrow Z(cc)H(cc)$	90.4	74.0	73.5	70.2	$e^+e^- \rightarrow Z(cc)H(\tau\tau)$	63.8	58.5	49.9	23.6
$^+e^- \rightarrow Z(cc)H(bb)$	80.9	68.6	68.2	63.3	$e^+e^- \rightarrow Z(qq)H(\tau\tau)$	63.8	58.5	49.9	23.6
$^+e^- \rightarrow Z(qq)H(gg)$	99.3	75.0	74.1	72.9	$e^+e^- \rightarrow Z(bb)H(Z\gamma)$	78.5	62.4	55.0	46.7
$^+e^- \rightarrow Z(qq)H(ss)$	99.8	75.7	74.8	73.7	$e^+e^- \rightarrow Z(ss)H(Z\gamma)$ $e^+e^- \rightarrow Z(ss)H(Z\gamma)$	86.3	67.3	58.4	50.7
$^+e^- \rightarrow Z(qq)H(cc)$	94.5	74.8	74.1	71.7					100.00
$^+e^- \rightarrow Z(qq)H(bb)$	85.0	70.5	70.0	65.6	$e^+e^- \rightarrow Z(cc)H(Z\gamma)$	90.3	69.1	59.4	52.0
$^+e^- \rightarrow Z(bb)H(gg)$	86.6	71.8	71.3	67.0	$e^+e^- \rightarrow Z(qq)H(Z\gamma)$	90.1	68.6	58.9	51.6
$^+e^- \rightarrow Z(bb)H(ss)$	87.2	72.4	71.9	67.6	$e^+e^- \rightarrow Z(bb)H(WW)$	57.8	49.8	48.1	36.6
$^+e^- \rightarrow Z(bb)H(cc)$	81.9	69.3	68.9	64.1	$e^+e^- \rightarrow Z(ss)H(WW)$	63.8	53.7	51.6	40.2
$^+e^- \rightarrow Z(bb)H(bb)$	72.5	63.0	62.7	56.8	$e^+e^- \rightarrow Z(cc)H(WW)$	66.8	55.0	52.6	41.2
$^+e^- \rightarrow Z(ss)H(gg)$ $^+e^- \rightarrow Z(ss)H(ss)$	99.3 99.8	75.8 76.5	74.9	73.6 74.4	$e^+e^- \rightarrow Z(qq)H(WW)$	66.7	54.6	52.3	40.8
$^+e^- \rightarrow Z(ss)H(ss)$ $^+e^- \rightarrow Z(ss)H(cc)$	99.6	75.4	74.6	72.2	$e^+e^- \rightarrow Z(bb)H(ZZ)$	73.0	60.4	53.8	39.6
$^+e^- \rightarrow Z(ss)H(bb)$	85.1	70.9	70.3	66.0	$e^+e^- \rightarrow Z(ss)H(ZZ)$	80.8	65.2	58.5	43.7
		1 0.365 0			$e^+e^- \rightarrow Z(cc)H(ZZ)$	84.7	67.7	60.4	45.4
2 per event					$e^+e^- \rightarrow Z(qq)H(ZZ)$	84.7	67.3	60.0	45.0
					$e^+e^- \rightarrow Z(\nu\nu)H(jj)$	84.5	1.8	0.8	0.0
					$e^+e^- \rightarrow W^+W^-$	63.8	41.8	31.2	27.9
					$e^+e^- \rightarrow ZZ$	76.8	37.7	32.7	29.9
					$e^+e^- \rightarrow Z/\gamma^*(q\bar{q})$	99.6	31.2	15.9	15.4

 $e^+e^- \rightarrow t\bar{t}$

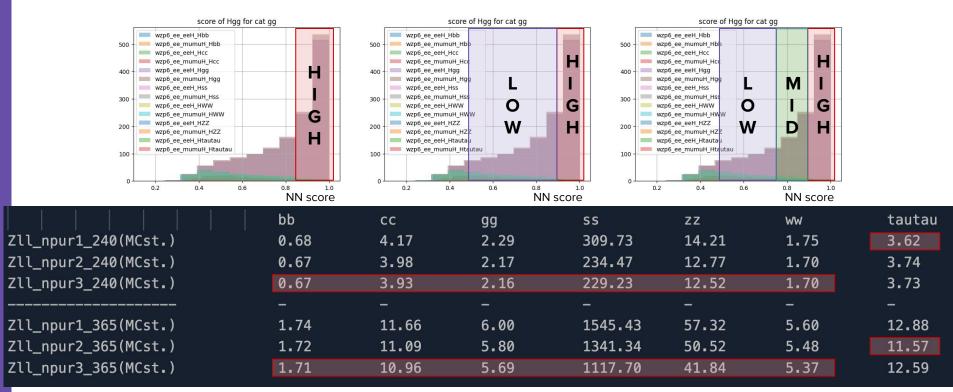
53.6

50.5

49.5

37.9

- Events (orthogonal to $ll, \nu\nu$ analysis)
- $n_j = 4$ per event
- · Cuts on leptons
- lepton (both e, μ) $p_l < 20 \text{ GeV } \& n_{e,\mu} \le 2 \text{ per event}$
- Cuts on $m_{\rm vis}, \theta_{\rm vis}$
 - $m_{\rm vis} > 150 \,{\rm GeV}, E_{\rm vis} > 190 \,{\rm GeV}$
 - $0.15 < \theta_{vis} < 3$
- Clustering merging parameter cut (d₁₂, d₂₃, d₃₄)
- χ^2 on the energy correction <100
- · On the jet pairs


• Pairs: Find minimum $(m_{j_1j_2} - m_Z)^2 + (m_{j_3j_4} - m_H)^2$ for all jet combination $\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10, \sqrt{(m_{z_{jj}} - m_Z)^2 + (m_{H_{jj}} - m_Z)^2} > 10, ZZ, WW$ rejection • 50 < $m_{Z_{ij}}$ < 125 GeV, $m_{H_{ij}} > 91$ GeV

Selection - 240 GeV

		Before selection	Lepton cuts	$ \cos(\theta_{inv}) < 0.85$	kinematics & d	efficiency(%)
Hbb	$Yield(10^5)$	2.91	2.67	2.28	2.28	78.4
H 00	Sig.	10.59	10.34	16.01	54.0	10.4
II.ee	$Yield(10^4)$	1.44	1.41	1.21	1.21	210
Hcc	Sig.	0.52	0.54	0.84	2.87	84.0
II	$Yield(10^4)$	3.59	3.59	3.08	3.07	OFF
Hgg	Sig.	1.30	1.39	2.16	7.27	85.5
II	Yield	110	110	93.9	93.9	05 5
Hss	Sig.	0.004	0.004	0.006	0.02	85.5
TT	$Yield(10^4)$	2.73	1.97	1.67	1.38	FOF
$H\tau\tau$	Sig.	0.99	0.76	1.17	3.27	50.5
HWW	$Yield(10^4)$	10.4	7.34	6.28	6.10	58.7
HZZ	$Yield(10^4)$	1.25	1.10	0.94	0.80	64.0
qqH	$Yield(10^5)$	14.7	12.6	8.86	0.56	3.8
ŴW	$Yield(10^7)$	17.3	10.6	6.35	1.26	7.3
ZZ	$Yield(10^6)$	14.0	11.0	6.93	2.60	18.6
Zqq	$Yield(10^7)$	56.6	54.7	13.1	0.22	0.4

 $S/\sqrt{S+B}$

Backup - Purity categories

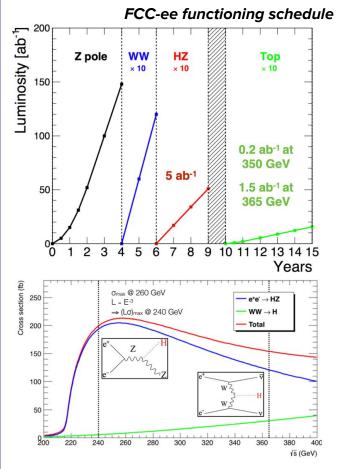
For Zvv, all categories yield the best precision with 3 purity categories

Yields for Z(II) at 240 GeV

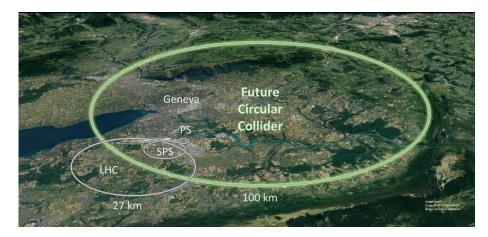
Expected yields (significance s/√tot) for Zll at E = 240									
	bb	сс	gg	SS	WW	ZZ	tautau	bkg	TOTAL
bb_low	8043.0 (76)	0.6 (0)	61.5 (1)	0.0 (0)	5.5 (0)	103.0 (1)	0.0 (0)	2895.1	11108.7
bb_mid	7330.8 (77)	0.2 (0)	13.9 (0)	0.0 (0)	1.1 (0)	16.2 (0)	0.0 (0)	1775.7	9137.9
bb_high	32970.0 (175)	0.0 (0)	3.8 (0)	0.0 (0)	0.2 (0)	4.1 (0)	0.0 (0)	2389.3	35367.4
cc_low	57.8 (1)	458.0 (7)	79.0 (1)	0.1 (0)	230.6 (4)	62.1 (1)	0.0 (0)	3342.0	4229.5
cc_mid	19.7 (0)	474.4 (10)	12.8 (0)	0.0 (0)	17.6 (0)	5.8 (0)	0.0 (0)	1693.6	2223.9
cc_high	5.0 (0)	1487.7 (27)	3.7 (0)	0.0 (0)	1.2 (0)	0.9 (0)	0.0 (0)	1632.5	3131.2
gg_low	418.6 (6)	16.3 (0)	1812.0 (26)	0.8 (0)	596.6 (9)	84.7 (1)	0.0 (0)	1970.2	4899.3
gg_mid	92.4 (2)	4.4 (0)	2525.4 (43)	0.3 (0)	170.1 (3)	23.5 (0)	0.0 (0)	712.1	3528.1
gg_high	9.2 (0)	0.7 (0)	1628.7 (39)	0.0 (0)	14.8 (0)	2.1 (0)	0.0 (0)	96.7	1752.1
ss_low	2.0 (0)	10.2 (0)	318.8 (5)	5.0 (0)	134.1 (2)	64.5 (1)	0.1 (0)	4241.1	4775.8
ss_mid	0.2 (0)	3.9 (0)	41.8 (1)	5.2 (0)	4.4 (0)	4.1 (0)	0.0 (0)	2207.7	2267.4
ss_high	0.0 (0)	1.0 (0)	7.1 (0)	9.4 (0)	0.1 (0)	0.1 (0)	0.0 (0)	1668.6	1686.4
WW_low	33.7 (0)	41.3 (1)	100.2 (1)	0.1 (0)	2132.6 (30)	94.6 (1)	4.0 (0)	2637.1	5043.5
WW_mid	14.5 (0)	15.7 (0)	30.7 (1)	0.0 (0)	1583.8 (30)	36.4 (1)	1.2 (0)	1051.2	2733.5
WW_high	16.8 (0)	14.5 (0)	26.1 (0)	0.0 (0)	5689.0 (65)	43.0 (0)	1.0 (0)	1855.4	7645.9
ZZ_low	2117.1 (19)	44.9 (0)	116.4 (1)	0.2 (0)	733.4 (7)	411.2 (4)	1.8 (0)	9017.1	12442.1
ZZ_mid	295.7 (4)	4.5 (0)	17.7 (0)	0.0 (0)	144.6 (2)	208.1 (3)	0.4 (0)	4087.8	4758.8
ZZ_high	75.8 (1)	0.9 (0)	4.2 (0)	0.0 (0)	109.4 (1)	524.1 (5)	0.1 (0)	10477.7	11192.2
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	262.6 (2)	29.1 (0)	3777.6 (26)	16444.0	20513.3
TOTAL	51502.2	2579.2	6803.8	21.1	11831.8	1717.6	3786.2		

Yields for Z(vv) at 240 GeV

Expected yields (significance s/√tot) for Znunu at E = 240									
	bb	сс	gg	ss	WW	ZZ	tautau	bkg	TOTAL
bb_low	37028.7 (72)	6.4 (0)	337.8 (1)	0.0 (0)	15.1 (0)	423.7 (1)	0.4 (0)	226228.0	264040.2
bb_mid	39730.1 (113)	1.7 (0)	40.8 (0)	0.0 (0)	1.4 (0)	61.9 (0)	0.1 (0)	83828.9	123664.9
bb_high	129708.7 (289)	0.3 (0)	10.1 (0)	0.0 (0)	0.1 (0)	8.7 (0)	0.1 (0)	71205.7	200933.7
cc_low	130.5 (0)	1776.9 (3)	343.7 (1)	0.1 (0)	812.4 (1)	261.4 (0)	0.1 (0)	332054.7	335379.7
cc_mid	47.5 (0)	1665.6 (5)	74.0 (0)	0.0 (0)	71.5 (0)	29.9 (0)	0.0 (0)	93776.2	95664.6
cc_high	24.2 (0)	7168.4 (27)	25.8 (0)	0.0 (0)	12.9 (0)	6.4 (0)	0.0 (0)	64817.7	72055.3
gg_low	744.0 (3)	44.1 (0)	4432.3 (16)	1.8 (0)	977.3 (4)	133.6 (0)	0.0 (0)	66351.5	72684.4
gg_mid	339.9 (2)	21.0 (0)	4754.8 (25)	0.9 (0)	472.2 (3)	65.4 (0)	0.0 (0)	29167.5	34821.6
gg_high	162.9 (1)	13.7 (0)	14473.8 (76)	0.7 (0)	368.8 (2)	48.2 (0)	0.0 (0)	21558.8	36627.0
ss_low	3.1 (0)	33.5 (0)	1045.4 (3)	7.3 (0)	460.5 (1)	199.7 (1)	0.0 (0)	131829.1	133578.8
ss_mid	1.0 (0)	11.9 (0)	283.9 (1)	4.0 (0)	98.5 (0)	54.4 (0)	0.0 (0)	44494.3	44948.0
ss_high	1.2 (0)	41.8 (0)	641.1 (2)	77.2 (0)	107.1 (0)	83.5 (0)	0.0 (0)	161135.3	162087.2
WW_low	170.9 (0)	186.5 (0)	756.6 (1)	0.4 (0)	9842.1 (11)	523.1 (1)	0.2 (0)	813993.5	825473.4
WW_mid	91.0 (0)	96.5 (0)	199.4 (0)	0.1 (0)	7634.3 (9)	164.0 (0)	0.1 (0)	788286.0	796471.4
WW_high	84.0 (0)	55.4 (0)	112.0 (0)	0.1 (0)	16290.3 (13)	130.0 (0)	0.2 (0)	1546240.7	1562912.7
ZZ_low	9765.6 (10)	203.9 (0)	738.2 (1)	1.1 (0)	2723.3 (3)	1678.1 (2)	1.9 (0)	970946.3	986058.3
ZZ_mid	1112.0 (1)	12.1 (0)	108.0 (0)	0.2 (0)	352.4 (0)	789.1 (1)	0.1 (0)	639893.7	642267.5
ZZ_high	57.4 (0)	0.7 (0)	10.1 (0)	0.0 (0)	80.9 (0)	453.4 (1)	0.0 (0)	652726.7	653329.3
tautau_low	1.2 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.7 (0)	2.5 (0)	29.3 (0)	14886.1	14919.8
tautau_mid	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.1 (0)	0.1 (0)	16.8 (0)	3182.0	3198.9
tautau_high	0.5 (0)	0.0 (0)	0.0 (0)	0.0 (0)	2.3 (0)	1.8 (0)	5358.7 (9)	328666.1	334029.3
TOTAL	270706.6	13919.7	35191.6	115.1	52155.9	6836.2	9194.2		


Yields for Z(II) at 365 GeV

Expected vields (significance s/√tot) f	or Zll at $E = 36$	5						
	bb		gg	SS	WW	ZZ	tautau	bkg	TOTAL
bb_low	546.9 (18)	0.2 (0)	6.9 (0)	0.0 (0)	1.2 (0)	11.0 (0)	0.0 (0)	410.1	976.4
_ bb_mid	2117.2 (40)	0.3 (0)	8.7 (0)	0.0 (0)	0.8 (0)	10.9 (0)	0.0 (0)	710.9	2848.8
_ bb_high	5392.6 (69)	0.1 (0)	0.6 (0)	0.0 (0)	0.0 (0)	1.0 (0)	0.0 (0)	686.7	6081.1
cc_low	7.5 (0)	63.1 (2)	11.9 (0)	0.0 (0)	35.5 (1)	9.2 (0)	0.0 (0)	516.3	643.5
_ cc_mid	3.8 (0)	109.9 (4)	3.6 (0)	0.0 (0)	5.5 (0)	2.3 (0)	0.0 (0)	518.7	643.9
 cc_high	1.0 (0)	234.4 (9)	0.6 (0)	0.0 (0)	0.4 (0)	0.2 (0)	0.0 (0)	468.2	704.6
gg_low	39.9 (1)	2.6 (0)	312.9 (11)	0.1 (0)	87.3 (3)	12.4 (0)	0.0 (0)	412.8	868.1
gg_mid	9.8 (0)	0.8 (0)	385.1 (16)	0.0 (0)	25.9 (1)	3.8 (0)	0.0 (0)	168.6	594.2
gg_high	0.6 (0)	0.2 (0)	248.5 (14)	0.0 (0)	3.1 (0)	0.5 (0)	0.0 (0)	70.8	323.7
ss_low	0.4 (0)	2.2 (0)	70.7 (2)	1.3 (0)	22.1 (1)	10.8 (0)	0.0 (0)	1733.8	1841.3
ss_mid	0.0 (0)	0.1 (0)	1.6 (0)	0.3 (0)	0.1 (0)	0.1 (0)	0.0 (0)	220.6	222.8
ss_high	0.0 (0)	0.1 (0)	1.2 (0)	1.2 (0)	0.1 (0)	0.1 (0)	0.0 (0)	490.2	492.8
WW_low	5.4 (0)	12.4 (0)	36.6 (1)	0.0 (0)	746.2 (17)	28.4 (1)	0.4 (0)	1071.7	1901.0
WW_mid	0.3 (0)	0.5 (0)	0.8 (0)	0.0 (0)	64.6 (5)	1.0 (0)	0.0 (0)	81.6	148.8
WW_high	0.8 (0)	1.5 (0)	2.4 (0)	0.0 (0)	468.0 (12)	3.8 (0)	0.0 (0)	1008.8	1485.2
ZZ_low	333.6 (7)	6.4 (0)	14.7 (0)	0.0 (0)	73.9 (2)	46.5 (1)	0.1 (0)	1753.1	2228.2
ZZ_mid	111.3 (2)	0.6 (0)	4.6 (0)	0.0 (0)	34.8 (1)	59.1 (1)	0.0 (0)	3604.8	3815.2
ZZ_high	1.5 (0)	0.0 (0)	0.1 (0)	0.0 (0)	2.2 (0)	22.3 (1)	0.0 (0)	493.8	520.0
tautau_low	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	8.6 (0)	1.1 (0)	140.4 (4)	1275.9	1426.1
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.2 (0)	0.2 (0)	244.4 (8)	813.0	1057.8
TOTAL	279279.4	14355.0	36303.2	118.0	53736.2	7060.9	9579.6		


Yields for Z(vv) at 365 GeV

Expected yields (significance s/√tot) for Znunu at E = 365									
	bb	сс	gg	S 5	WW	ZZ	tautau	bkg	TOTAL
bb_low	612.4 (12)	0.7 (0)	11.9 (0)	0.0 (0)	0.6 (0)	17.6 (0)	0.0 (0)	1960.5	2603.7
bb_mid	2277.7 (25)	0.9 (0)	19.2 (0)	0.0 (0)	1.5 (0)	25.0 (0)	0.0 (0)	6114.6	8438.8
bb_high	15474.2 (114)	0.5 (0)	7.0 (0)	0.0 (0)	0.2 (0)	8.6 (0)	0.0 (0)	2837.1	18327.4
cc_low	17.3 (0)	238.4 (2)	46.8 (0)	0.0 (0)	129.7 (1)	29.1 (0)	0.0 (0)	14911.8	15373.2
cc_mid	2.2 (0)	200.6 (4)	5.0 (0)	0.0 (0)	4.5 (0)	3.0 (0)	0.0 (0)	2405.1	2620.5
cc_high	1.1 (0)	659.4 (15)	1.6 (0)	0.0 (0)	0.4 (0)	0.5 (0)	0.0 (0)	1289.1	1952.2
gg_low	141.9 (2)	10.8 (0)	1459.5 (19)	0.5 (0)	346.1 (4)	44.8 (1)	0.0 (0)	4155.9	6159.4
gg_mid	6.0 (0)	0.7 (0)	561.0 (20)	0.0 (0)	23.7 (1)	3.4 (0)	0.0 (0)	203.7	798.6
gg_high	1.3 (0)	0.2 (0)	679.6 (25)	0.0 (0)	9.0 (0)	1.3 (0)	0.0 (0)	56.5	747.9
ss_low	0.3 (0)	6.2 (0)	224.4 (2)	3.5 (0)	60.8 (1)	27.5 (0)	0.0 (0)	8322.5	8645.2
ss_mid	0.0 (0)	0.7 (0)	7.8 (0)	2.0 (0)	0.3 (0)	0.3 (0)	0.0 (0)	593.0	604.2
ss_high	0.0 (0)	0.2 (0)	1.6 (0)	2.5 (0)	0.0 (0)	0.0 (0)	0.0 (0)	251.6	255.8
WW_low	5.7 (0)	16.4 (0)	43.5 (0)	0.0 (0)	1195.4 (8)	32.4 (0)	0.0 (0)	23020.3	24313.7
WW_mid	0.2 (0)	2.7 (0)	5.9 (0)	0.0 (0)	640.3 (7)	6.2 (0)	0.0 (0)	8361.2	9016.5
WW_high	0.1 (0)	0.2 (0)	0.4 (0)	0.0 (0)	175.9 (5)	0.7 (0)	0.0 (0)	1151.5	1328.8
ZZ_low	348.6 (2)	12.8 (0)	40.5 (0)	0.1 (0)	164.5 (1)	77.0 (1)	0.0 (0)	19706.9	20350.5
ZZ_mid	133.1 (1)	2.5 (0)	8.3 (0)	0.0 (0)	18.5 (0)	37.3 (0)	0.0 (0)	14417.9	14617.6
ZZ_high	16.0 (0)	0.5 (0)	1.8 (0)	0.0 (0)	6.7 (0)	15.4 (0)	0.0 (0)	50616.6	50657.1
tautau_low	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.1 (0)	552.9	553.1
tautau_mid	0.1 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	1.4 (0)	156.9	158.3
tautau_high	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	0.0 (0)	109.5 (4)	692.0	801.5
TOTAL	298317.4	15509.6	39429.2	126.6	56514.3	7390.8	9690.6		

The FCC experiment - FCC-ee

- **FCC** (Future Circular Collider)
 - ~90km circular collider project
 - Two periods on functioning : **FCC-ee** & FCC-hh

- Great improvement on EW studies wrt LEP
 Higgs factory
- Great prospects for new physics (hh)

Fitting strategy for all channels

Fitting using CMS tool CombineTF to extract σ .BR in each category

7 POIs, Hbb, Hcc, Hss, Hgg, Htt, HWW, HZZ (floating parameters)

Binning :

BNL: 1 GeV bin width (projected in 5 GeV for the recoil mass)

APC : custom binning *by-eye* (negligible/little improvement compared to 1 GeV width)

Empty categories removed from the fit

Rebinned such that :

There is at least one **expected** (sum of sig+bkg) event in each bin

Add 10-6 events in empty bins to help fit convergence, without implementing a bias

Monte Carlo stats uncertainties

No systematics on the backgrounds