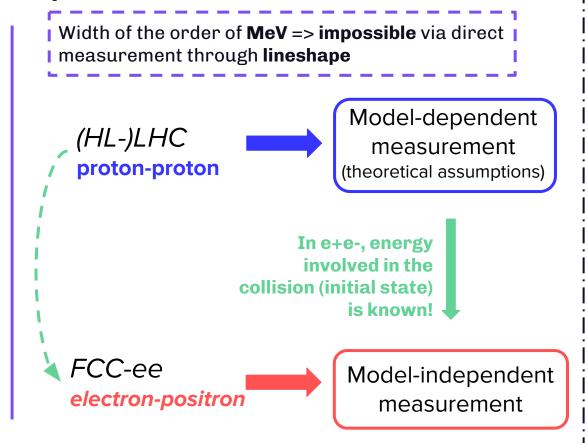
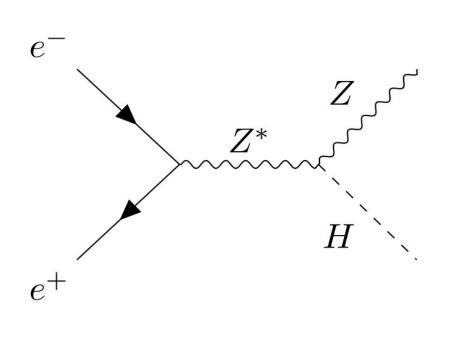

Higgs width measurement at FCC-ee in the ZH,H(ZZ*) final state

Inès Combes (IJCLab, Orsay) 05-11-2024, FCC Workshop Venice


Higgs width and its LHC/FCC-ee measurement methods

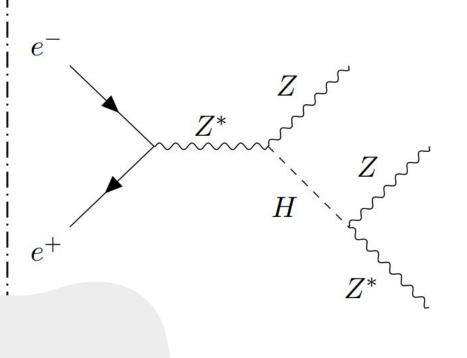
For a 125 GeV Higgs boson :


 $\Gamma_H \sim 4.1 \, \mathrm{MeV}$

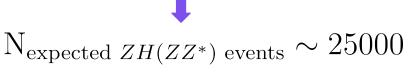
Standard Model prediction

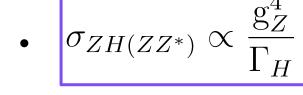
Essential property of the
Higgs boson
=> directly linked to its
decays so potentially to
new physics!

Higgs factory (ZH) at \sqrt{s} = 240 GeV

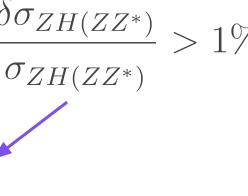


 $N_{expected\ ZH\ events} \sim 10^6$ for a luminosity of 5 ab-1 for the ZH run in these studies


$$\sigma_{
m ZH} \propto {
m g}_Z^2$$


=> direct measurement of ZH cross section in electron-positron collider (initial energy known so access to recoil mass)

Specific decay of the Higgs: H(ZZ*)

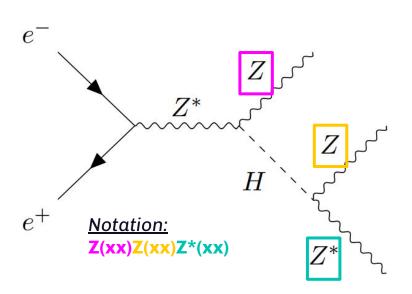

Link between Higgs' width and ZH,ZZZ cross section

Higgs' width measurement and its uncertainty

$$\Gamma_H \propto \frac{\sigma_{ZH}^2}{\sigma_{ZH(ZZ^*)}}$$

the uncertainty on the width is the one on the ZH(ZZ*) cross section in first approximation

 σ_{ZH}



ZH(ZZ*) - Different final states

$$\mathrm{BR}(Z \to \mathrm{ee}/\mu\mu) \sim 6.7\%$$

 $\mathrm{BR}(Z \to \mathrm{qq}) \sim 70\%$
 $\mathrm{BR}(Z \to \nu\nu) \sim 20\%$

What has been

studied so far?

- 4 leptons final states (all combinations with either vv or jj)
- Mixed final states (3 combinations of II+jj+vv)
- One 4 jets final state (challenging)

Outline

01

Common features

Object reconstruction, samples, backgrounds

02

4 + X final states

Cut-based analysis, and combination

03

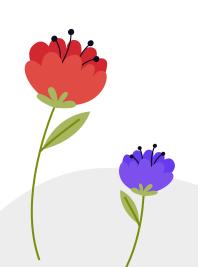
||+jj+vv final states

Cut based analysis and BDT-based analysis, and combination

04

Impact of systematics

Background normalisation and neutral hadron energy resolution


05

Challenging channels

Encountered challenges for some 4l and 4j channels

Common object reconstruction

- Pair of (high momentum) leptons coming from on-shell or off-shell Z(s)
 - => For on-shell Z(s), pair(s) of same flavor and opposite sign leptons both passing the selection **25<p<80GeV** reconstructed by taking the lepton pair with the dilepton mass closest to the Z mass. In the 4l case, if the other Z is off-shell, remaining same flavor and opposite sign leptons with **p>5GeV**.
 - => Preselection to select the right number of leptonic Z depending on the considered channel
- Jets (coming from either the on shell or off shell Z of the Higgs)
 - => Jet reconstruction with **Durham-kt** algorithm in the FCC Analysis framework, njets mode with **njets = 2** (or 4 in 4j case). Hadronic Zs reconstructed picking the pair of jets with the dijet mass closest to the **Z mass** (and building its 4-vector), and building the off-shell Z from the leftover jets.
- Neutrinos
 - => extraction of missing energy, missing transverse energy, missing z-momentum

Backgrounds for ZH(ZZ*) and samples

- Most abundant
 - ∫ ZZ
 - WW
 - ZH with all other Higgs' decays :

$H \to \gamma Z$ $H \to l^+ l^ H \to q\bar{q}$ $H \to gg$ $H \to \gamma \gamma$

 $H \to WW$

Expected number of signal and background (in this study for 5ab-1):

Ľ	Number of events for $L = 5ab^{-1}$						
11	H(ZZ)	ZZ	WW	H(WW)	H(bb)	$H(\tau\tau)$	H(other)
!	$\sim 26~400$	$\sim 6.8 \ 10^6$	$\sim 82 \ 10^6$	$\sim 215~000$	$\sim 577~000$	$\sim 63~200$	$\sim 90~000$

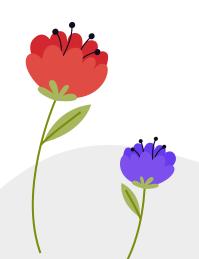
<u>Samples:</u>

FCC-ee winter2023 production with IDEA Delphes datacard

ZH: Whizard+Pythia6

ZZ/WW: Pythia8

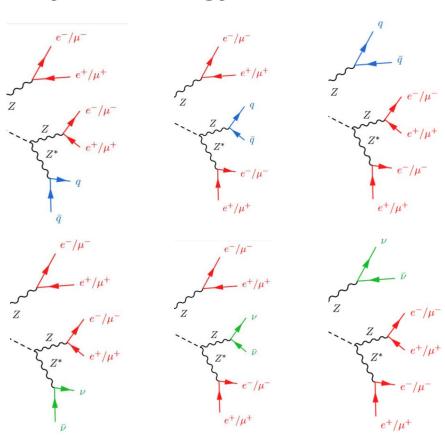
02

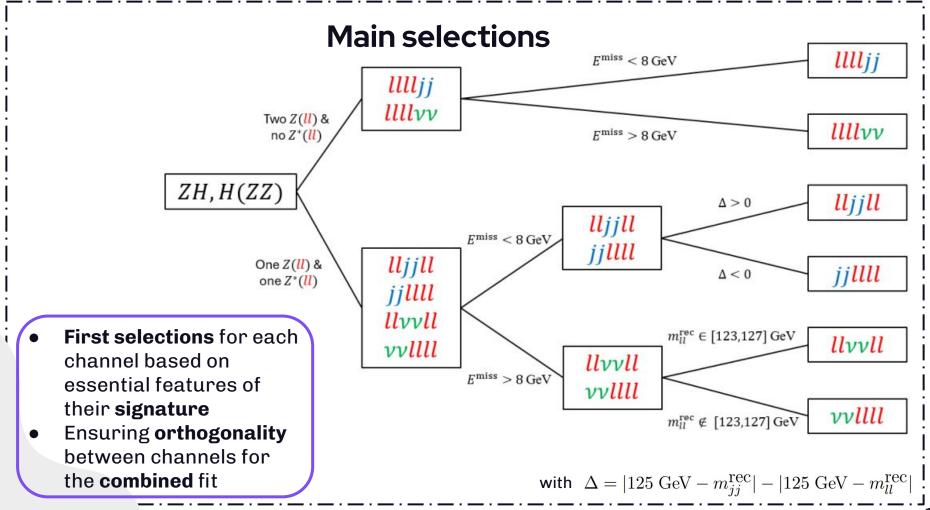


Work done by **Hind Taibi** (with Marco Delmastro and Olivier Arnaez, LAPP, Annecy) Note: every figure in this part is taken from her work

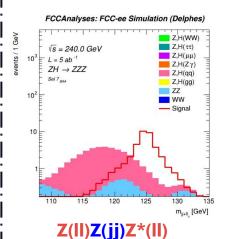
Hind's internship presentation

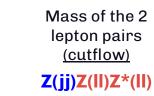
Few points on a similar new studies done in the **Bari** group!

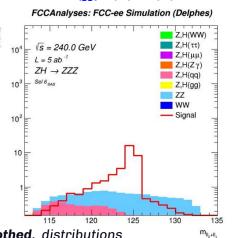

Final states and analysis strategy

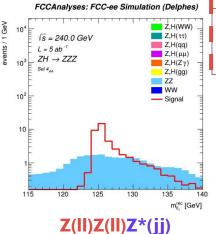

Consider **every (6)** possible combinations of 4 leptons + either vv or jj

Analysis/results: => cut-based using recoil mass, dilepton mass, missing energy, ...

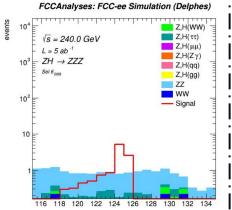

Uncertainties obtained with individual fits and **combination of**4 out the 6 channels





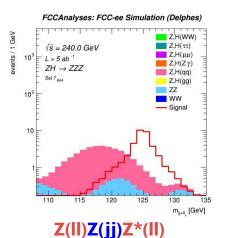

4 clear channels - variables used for their fit

Mass of the jet pair and the off-shell Z lepton pair (cutflow)

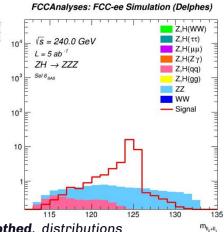


Recoil mass of the first Z lepton pair (cutflow)

Channel	S/B	S/\sqrt{B}
$Z_1({\color{red} {\it ll}})Z_2({\color{red} {\it ll}})Z_3(jj)$	~ 1.5	~ 7.9
$Z_1(\underline{ll})Z_2(jj)Z_3(\underline{ll})$	~ 0.95	~ 6.2
$Z_1(jj)Z_2({\color{red} l}{\color{blue} l})Z_3({\color{blue} l}{\color{blue} l})$	~ 3.1	~ 10.9
$Z_1(\nu\nu)Z_2(ll)Z_3(ll)$	~ 0.75	~ 2.9


Mass of the 2 lepton pairs (cutflow)

Z(vv)Z(II)Z*(II)

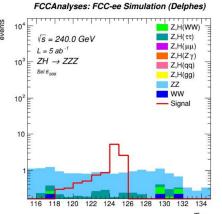

Note: these distributions are **smoothed**, distributions before smoothing are shown in <u>backup</u>

4 clear channels - variables used for their fit

Mass of the jet pair and the off-shell Z lepton pair (cutflow) Mass of the 2 lepton pairs (cutflow)

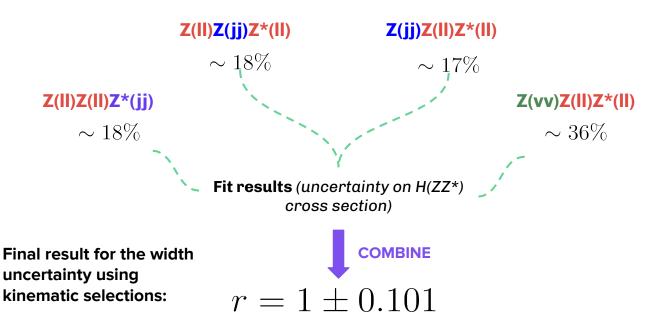
Z(jj)Z(II)Z*(II)

FCCAnalyses: FCC-ee Simulation (Delphes) S = 240.0 GeV $L = 5 \text{ ab}^{-1}$ Z + H(yw) Z + H(yw)


Z(II)Z(II)Z*(jj)

Recoil mass of the first Z lepton pair (cutflow)

Reach a good S/B with kinematic selection analyses! (Without using BDT!)


Mass of the 2 lepton pairs (cutflow)

Z(vv)Z(II)Z*(II)

Note: these distributions are **smoothed**, distributions before smoothing are shown in <u>backup</u>

Fits and combination

$$\frac{\delta \sigma_{ZH(ZZ^*)}}{\sigma_{ZH(ZZ^*)}} \sim \frac{\delta \Gamma_H}{\Gamma_H} \sim 10.1\%$$

Included systematics :

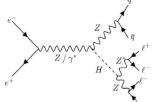
- For jjill and lijjl only: H(qq) normalisation: 10%
- ZZ normalisation : 10%

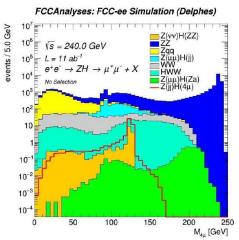
In yellow, differences with Hind's work

Alternative 41 studies

Z(jj)Z(ll)Z*(ll) Z(vv)Z(ll)Z*(ll)

 $H(ZZ^*) \rightarrow (4l)$ channel Two channels studied: Z(jj)H(4l) and Z(vv)H(4l)


By: Yehia Mahmoud and Nicola De Filippis in collaboration with Michela Selvaggi and Jan Eysermans


Samples:

Produced by WHIZARD+PYTHIA for event generation and Delphes (IDEA detector card) for detector simulation. FCCee Winter 2023 Samples. Events produced at \sqrt{s} = 240 GeV and L = 10.8 ab⁻¹. Hind=>5ab-1

Backround -> ZZ/ WW/ Zqq/ HWW/ HJJ/ HZa Hind=> no Zqq, all ZH,H(xx) Lepton Selection criteria (Same for hadronic and invisible channels):

- First pair of leptons (From On-shell Z)
 - Oppositely charged leptons
 - The pair which minimises |M_{ιι} M_z|
- Second Pair of leptons (From off-shell Z)
 - Oppositely charged leptons
 - Highest momentum oppositely charged pair of the remaining
- Additional cut for 2e2mu: On-shell Z mass > 60 GeV. This is to remove contribution from Off-Shell Z leptons.

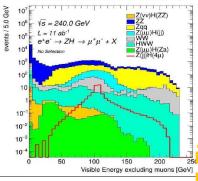
In yellow, differences with Hind's work

Alternative 41 studies

H(ZZ*) -> (4l) channel Two channels studied: 3 Z(jj)H(4l) and Z(vv)H(4l)

Analysis cuts:

- Momentum of the softest lepton of the reconstructed 4 lepton: $P_{min} > 5 \text{ GeV}.$
- Missing momentum cut:


 P_{miss} < 40 GeV for Z(jj), P_{miss} > 100 GeV for Z(vv)

Visible energy of all the reconstructed particles excluding the 4 leptons

 $E_{vis} > 30 \text{ GeV}$

- Invariant mass of dimuon pair from the Off-shell Z* 10 < M_{7*} < 65 GeV
- Invariant mass of the 4 leptons:

124 < M₄₁ < 125.5 GeV

FCCAnalyses: FCC-ee Simulation (Delphes)

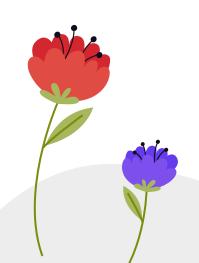
Z(jj)Z(II)Z*(II)
Z(vv)Z(II)Z*(II)

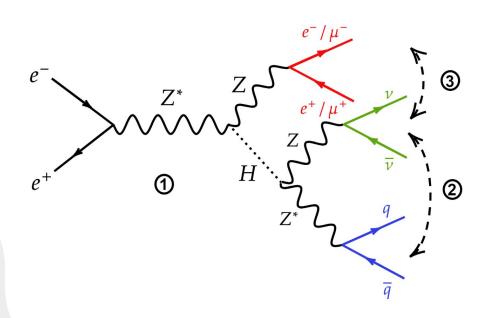
<u>WARNING</u> :			
analyses involve			
some differences			
in the lumi and			
backgrounds			

Channel	Signal yield	Total Bckg	s/√(s+b)	
Z(jj)H(4µ)	26	3	4.82	
Z(jj)H(4e)	19	8	3.6	
$Z(jj)H(2e2\mu)$	20	5	4.0	
$Z(vv)H(4\mu)$	9	4	2.496	
Z(vv)H(4e)	6	2	2.12	
$Z(vv)H(2e2\mu)$	7	3	2.21	

S/B combining Hind's all types of S/B: leptons together: ~3.1 ~4 ~2.44 ~ 0.75

Work ongoing in Bari, interesting results upcoming!


03


Work done in IJCLab (Paris) with Nicolas Morange

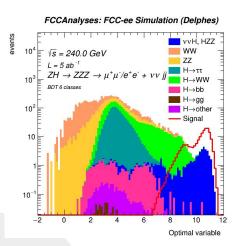
<u>Presentation</u> at Higgs/Top performance meeting (24.07.2023, Paris) FCC <u>Note</u> written in 09.23

Mixed channels signature and analysis strategy

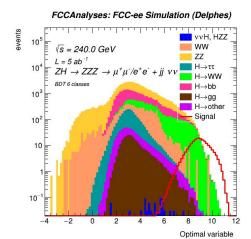
Study of 3 combinations of ||+vv+jj

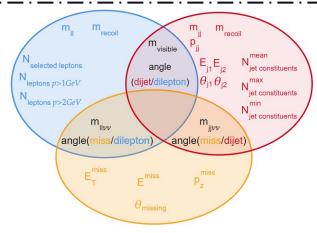
2 types of analyses/results:

- Cut-based (backup, from this slide)
- BDT

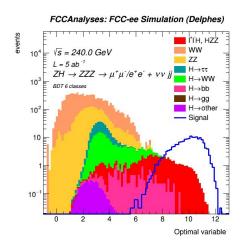

Uncertainties obtained with individual fits and **combination**

3 mixed channels


Boosted decision tree classification:


- Trained on 6 classes (signal, ZZ, WW, ZH(WW), ZH(bb), ZH(tautau))
- Variables shown on the diagram on the right
- Output: <u>optimal</u> variables for S and B separation (likelihood ratio)

Z(II)Z(vv)Z*(jj)



Z(II)Z(jj)Z*(vv)

Z(vv)Z(II)Z*(jj)

Fits and combination

 $\sim 7.4\%$

Z(II)Z(jj)Z*(vv) $\sim 10.7\%$

Z(vv)Z(II)Z*(jj) $\sim 6.9\%$

Fit results (uncertainty on H(ZZ*) cross section)

COMBINE

$$r = 1 \pm 0.046$$

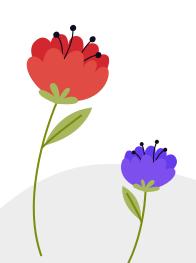
$$\frac{\delta\sigma_{ZI}}{\sigma_{ZI}}$$

 $\frac{\delta\sigma_{ZH(ZZ^*)}}{\sigma_{ZZ^*}} \sim \frac{\delta\Gamma_H}{\Gamma_H} \sim 4.6\%$

Final result for the width uncertainty using **BDT**:

Included systematics:

- H(WW*) normalisation: 5%
- ZZ normalisation: 10%


Cut-based analysis

 $\sim 6.6\%$

30% better with BDT!

Impact of systematics

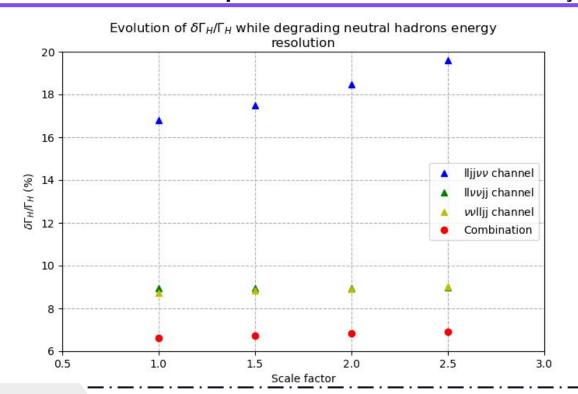
Influence of background normalisation

Leptonic (41) channels

Included systematics:

- For jjlll and ljjll only:
 H(qq) normalisation 10%
- ZZ normalisation: 10%

Channel	$\delta_{\mu}^{ m stat}$	$\delta_{\mu}^{ m tot}$
$Z_1({\color{red} ll})Z_2({\color{red} ll})Z_3(jj)$	+0.191 -0.173	$+0.193 \\ -0.176$
$ Z_1({\color{red} ll})Z_2(jj)Z_3({\color{red} ll}) $	+0.191 -0.173	$+0.193 \\ -0.174$
$ Z_1(jj)Z_2({\color{red} {\it ll}})Z_3({\color{red} {\it ll}}) $	+0.186 -0.168	+0.187 -0.168
$Z_1(u u)Z_2({\color{red}l}{\color{blue}l})Z_3({\color{red}l}{\color{blue}l})$	+0.393 -0.327	+0.394 -0.329
Combination	+0.103 -0.097	+0.104 -0.098

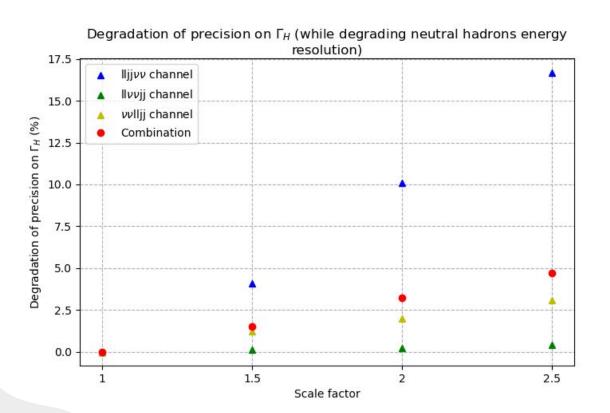

Mixed channels

Uncertainty in $\Gamma_H(\%)$	
Total	4.6%
Statistics	4.5%
H(WW*) normalisation (5%)	0.8%
ZZ normalisation (10%)	0.2%
WW normalisation (10%)	0.1%

In both studies, uncertainties dominated by **statistics**

Influence of neutral hadron energy resolution

Study on mixed channels containing one pair of jets -> expecting similar behavior for 4-leptons channels since at most one jet pair too

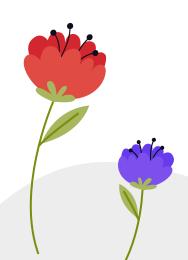


IDEA concept detector

Neutral hadron energy resolution : $\frac{30\%}{\sqrt{E}}$

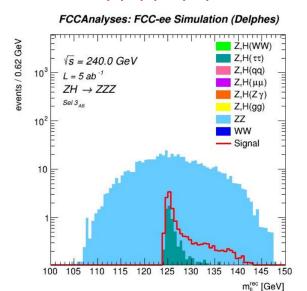
Small influence of degradation on Higgs' width uncertainty!
(combination, red dots)

Influence of neutral hadron energy resolution



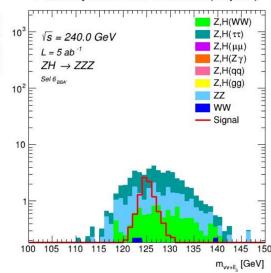
Loss of 5% in precision for the combination for a scale factor of 2.5

Neutral hadron energy resolution does **not** have **a big effect on Higgs' width measurement!**



Encountered challenges

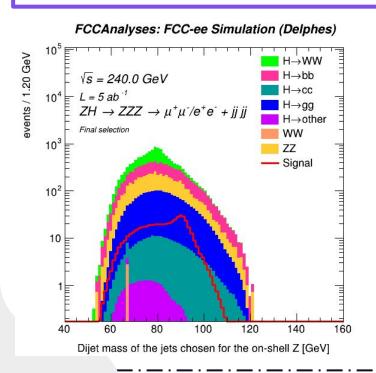
Encountered difficulties in 4I channels

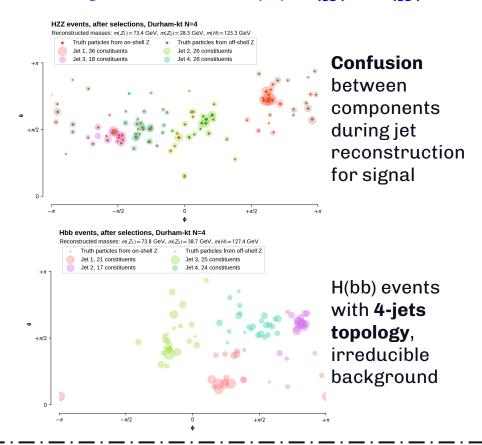


S/B not as good as the 4 other 4l channels

=> Contamination mostly coming from ZZ and ZH,H->tautau

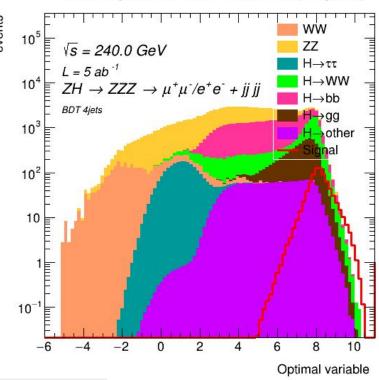
Z(II)Z(vv)Z*(II)

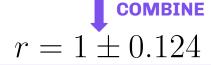




- Tau tagging would help reduce the H->tautau background
- Use of a BDT could give a good separation as it is seen in the 4j channel (next slides)

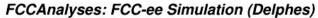

Encountered difficulties in a 4j channel: Z(II)Z(jj)Z*(jj)

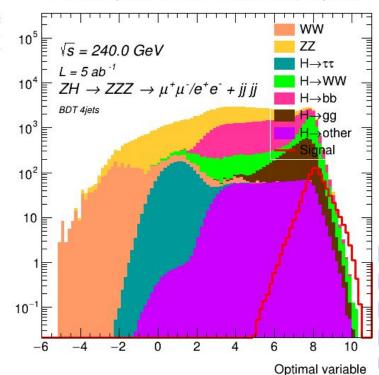

Difficult to reach a good S/B with kinematic selections for this channel


Encountered difficulties in a 4j channel: Z(II)Z(jj)Z*(jj)

With a BDT analysis:

Fit results (uncertainty on H(ZZ*) cross section)




 $\sim 12.4\%$ uncertainty

=> Even if there is confusion, still a good channel that could give a contribution of the **same order** of the 4-leptons one to a full **combination**!

Would still benefit from **flavour tagging** for reducing H->bb and tau tagging for H->tautau

Encountered difficulties in a 4j channel: Z(II)Z(jj)Z*(jj)

With a BDT analysis:

Fit results (uncertainty on *H*(*ZZ**) cross section)

COMBINE

 $r = 1 \pm 0.124$

 $\sim 12.4\%$ uncertainty

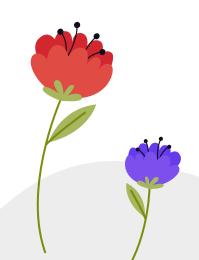
An interesting other 4j channel could be Z(jj)Z(jj)Z*(ll) where the 4 jets come from on-shell Z => more collimated so less confusion would be expected between the components!

Conclusion

- Higgs width uncertainty estimation : **10.1** % for 4-leptons channels.
- Higgs width uncertainty estimation: 4.6 % for mixed channels using BDT.
- Overall, 4% is easily reachable (naive combination)!
- **Low** impact of **neutral hadron energy resolution** on Higgs' width measurement (analysis without BDT)
- **Low** impact of **background normalisation systematics** on Higgs' width measurement
- **Ongoing:** 4-leptons channels in the group in Bari!

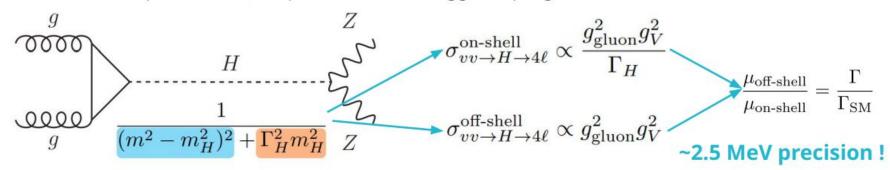
What could be coming **next**?

- Combining them all
- Adding other mixed channel, 4j, or others!
- Implementing BDT for 4l channels, especially for the ones not used yet in the combination
- Flavour tagging implementation to reduce H->qq backgrounds
- Tau tagging implementation to reduce H->tautau background


Conclusion

- Higgs width uncertainty estimation: **10.1**% for 4-leptons channels.
- Higgs width uncertainty estimation: 4.6 % for mixed channels using BDT.
- Overall, 4% is easily reachable (naive combination)!
- **Low** impact of **neutral hadron energy resolution** on Higgs' width measurement (analysis without BDT)
- **Low** impact of **background normalisation systematics** on Higgs' width measurement
- Ongoing: 4-leptons channels in the group in Bari!

What could be coming **next**?


- Combining them all
- Adding other mixed channel, 4j, or others!
- A sensitivity of around 1-2% seems at reach combining these efforts and new ideas!
- Implementing BDT for 4l channels, especially for the ones not used yet in the combination
- Flavour tagging implementation to reduce H->qq backgrounds
- Tau tagging implementation to reduce H->tautau background

Backup

Measurement method of the width at the LHC

- Indirect measurement at the LHC: off-shell Higgs production
 - Assumptions! No Q² dependence of the Higgs couplings, as in the SM

From Nicolas Morange's <u>slides</u>

Backup for 4I channels

Common selections for **Z(II)Z(II)Z*(xx)** (2 on-shell Zs)

	Signal				Backgro	und			
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW
Two $Z(\underline{ll})$ & no $Z^*(\underline{ll})$ (Sel 0_A)	113.6 ±0.5	181 ±2	7.56 ±0.01	25 ±1 0	59.4 ±0.6 8.7	5.76 ±0.03	0.007 ±0.007	12196 ±38	47 ±3 0
Sel $0_A + m_{ll_{1,2}} \in [80, 110]$ GeV (Sel 1_A)	65.2 ± 0.4	$\begin{array}{c} 1.0 \\ \pm 0.1 \end{array}$	$0.538 \\ \pm 0.003$	$\pm \delta < 1$	±0.2	4.63 ± 0.02	$\pm \delta < 0.007$	6286 ± 28	$\pm \delta < 3$
$Sel 1_A + E^{miss} < 8 GeV$ $(Sel 2_{AA})$	46.1 ± 0.3	$0.02 \\ \pm 0.02$	$0.498 \\ \pm 0.003$	$\begin{array}{c} 0 \\ \pm \delta < 1 \end{array}$	0.52 ± 0.05	4.34 ± 0.02	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	4817 ± 24	$\begin{array}{c} 0 \\ \pm \delta < 3 \end{array}$
$Sel 1_A + E^{miss} > 8 GeV$ $(Sel 2_{AB})$	19.1 ± 0.2	1.0 ±0.1	0.0399 ± 0.0009	$\begin{array}{c} 0 \\ \pm \delta < 1 \end{array}$	8.2 ±0.2	$0.289 \\ \pm 0.006$	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	1468 ±13	$\begin{array}{c} 0 \\ \pm \delta < 3 \end{array}$

Cutflow for Z(II)Z(II)Z*(jj)

	Signal				Backgro	und			
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW
Two $Z(\underbrace{ll})$ & no $Z^*(\underbrace{ll})$ (Sel 0_A)	$113.6 \\ \pm 0.5$	181 ±2	7.56 ± 0.01	$\frac{25}{\pm 1}$	59.4 ± 0.6	5.76 ± 0.03	$0.007 \\ \pm 0.007$	12196 ±38	47 ±3
$\begin{array}{c} {\rm Sel} \ 0_A + m_{l1,2} \in [80,110] \ {\rm GeV} \\ & \left({\rm Sel} \ 1_A \right) \end{array}$	65.2 ± 0.4	1.0 ± 0.1	$0.538 \\ \pm 0.003$	$\begin{array}{c} 0 \\ \pm \delta < 1 \end{array}$	8.7 ±0.2	4.63 ± 0.02	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	6286 ±28	$\begin{array}{c} 0 \\ \pm \delta < 3 \end{array}$
$\mathrm{Sel}\ 1_A + E^{\mathrm{miss}} < 8 \ \mathrm{GeV} \ \mathrm{(Sel}\ 2_{AA})$	46.1 ± 0.3	$0.02 \\ \pm 0.02$	$0.498 \\ \pm 0.003$	$0\\\pm\delta<1$	0.52 ± 0.05	4.34 ± 0.02	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	4817 ±24	$\begin{array}{c} 0 \\ \pm \delta < 3 \end{array}$
$\mathrm{Sel}\ 1_A + E^{\mathrm{miss}} > 8 \ \mathrm{GeV}$ $(\mathrm{Sel}\ 2_{AB})$	19.1 ±0.2	1.0 ±0.1	0.0399 ±0.00	0 < 1	8.2 ±0.2	$0.289 \\ \pm 0.006$	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	$1468 \\ \pm 13$	$\begin{array}{ c c }\hline 0\\ \pm \delta < 3\end{array}$

	45.1 ± 0.3	0.02 ± 0.02	0.204 ± 0.002	$\begin{array}{c} 0\\ \pm < 1 \end{array}$	0.43 ± 0.05	0.135 ± 0.004	$\begin{array}{ c c c }\hline 0\\ \pm \delta < 0.007\end{array}$	3539 ± 21	$\left \begin{array}{c}0\\\delta<3\end{array}\right $
$Sel 3_{AA} + m_{ll_2+\gamma}^{rec} > 115 \text{ GeV}$ $(Sel 4_{AA})$	$^{41.3}_{\pm 0.3}$	$0.02 \\ \pm 0.02$	$0.0160 \\ \pm 0.0005$	$\begin{array}{c} 0 \\ \pm \delta < 1 \end{array}$	0.32 ± 0.04	0.030 ± 0.002	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	29 ±2	$\begin{bmatrix} 0 \\ \pm \delta < 3 \end{bmatrix}$

Cutflow for Z(II)Z(II)Z*(vv)

	Signal				Backgro	und			
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW
Two $Z(\underbrace{ll})$ & no $Z^*(\underbrace{ll})$ (Sel 0_A) Sel $0_A + m_{ll_{1,2}} \in [80, 110]$ GeV (Sel 1_A)	113.6 ± 0.5 65.2 ± 0.4	181 ±2 1.0 ±0.1	7.56 ± 0.01 0.538 ± 0.003	25 ± 1 0 $\pm \delta < 1$	59.4 ±0.6 8.7 ±0.2	5.76 ± 0.03 4.63 ± 0.02	0.007 ± 0.007 0 $\pm \delta < 0.007$	12196 ± 38 6286 ± 28	$ \begin{array}{c} 47 \\ \pm 3 \\ 0 \\ \pm \delta < 3 \end{array} $
$\mathrm{Sel}\ 1_A + E^{\mathrm{miss}} < 8 \ \mathrm{GeV} \ \mathrm{(Sel}\ 2_{AA})$	46.1 ± 0.3	0.02 ± 0.02	$0.498 \\ \pm 0.003$	$0 \\ \pm \delta < 1$	0.52 ± 0.05	4.34 ± 0.02	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	4817 ±24	$\begin{array}{c} 0 \\ \pm \delta < 3 \end{array}$
$\mathrm{Sel}\ 1_A + E^{\mathrm{miss}} > 8 \; \mathrm{GeV} \ \mathrm{(Sel}\ 2_{AB})$	19.1 ± 0.2	1.0 ±0.1	0.0399 ± 0.0009	$\begin{array}{c} 0 \\ \pm \delta < 1 \end{array}$	8.2 ±0.2	$0.289 \\ \pm 0.006$	$\begin{array}{c} 0 \\ \pm \delta < 0.007 \end{array}$	1468 ±13	$\begin{array}{c} 0 \\ \pm \delta < 3 \end{array}$

							Dec.	100	
$Sel 2_{AB} + m_{ll_2}^{rec} \in [125, 150] \text{ GeV}$	16.1	0.7	0.0267	0	6.8	0.264	0	577	0
(Sel 3_{AB})	± 0.2	±0.1	± 0.0007	$\pm \delta < 1$	± 0.2	± 0.006	$\pm \delta < 0.007$	±8	$\pm \delta < 3$

Common selections for $Z(II)Z(xx)Z^*(II)$ or $Z(xx)Z(II)Z^*(II)$ (1 on-shell Z, 1 off-shell Z)

	Signal				Backgrou	ınd			
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW
One $Z(ll)$ & one $Z^*(ll)$ (Sel 0_B)	$206.8 \\ \pm 0.8$	270 ±2	5.97 ± 0.01	951 ±7	$130.5 \\ \pm 0.8$	1.17 ± 0.01	5.1 ± 0.2	28340 ±59	846 ±14
$\text{Sel } 0_B + m_{ll} \in [80, 110] \text{ GeV}$ $(\text{Sel } 1_B)$	$173.4 \\ \pm 0.7$	246 ±2	5.27 ± 0.01	866 ±6	$118.6 \\ \pm 0.8$	1.06 ± 0.01	4.7 ± 0.2	15680 ±44	257 ±8
$\begin{array}{c} \mathrm{Sel} \ 1_B \ + \ m_{ll_3} \in [10, 40] \ \mathrm{GeV} \\ \mathrm{(Sel} \ 2_B) \end{array}$	$158.2 \\ \pm 0.7$	187 ±2	$0.0288 \\ \pm 0.0007$	462 ±4	76.4 ± 0.6	$0.337 \\ \pm 0.007$	0.77 ± 0.07	3097 ± 19	12 ±2
$Sel 2_B + E^{miss} < 8 GeV $ $(Sel 3_{BA})$	96.4 ±0.5	$\begin{array}{c} 1.4 \\ \pm 0.2 \end{array}$	$0.0268 \\ \pm 0.0007$	155 ±2	0.19 ± 0.03	$0.152 \\ \pm 0.005$	0.32 ± 0.05	1412 ±13	$\begin{array}{c} 0 \\ \pm \delta < 2 \end{array}$
$Sel 2_B + E^{miss} > 8 GeV $ $(Sel 3_{BB})$	61.8 ±0.4	186 ±2	0.0020 ± 0.0002	307 ±4	76.2 ± 0.6	$0.185 \\ \pm 0.005$	$0.45 \\ \pm 0.06$	1685 ±14	12 ±2

Cutflow for Z(II)Z(jj)Z*(II)

	Signal				Backgrou	ınd			
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW
One $Z(ll)$ & one $Z^*(ll)$ (Sel 0_B)	$206.8 \\ \pm 0.8$	270 ±2	5.97 ± 0.01	951 ±7	$130.5 \\ \pm 0.8$	1.17 ± 0.01	5.1 ± 0.2	28340 ±59	846 ±14
Sel $0_B + m_{ll} \in [80, 110] \text{ GeV}$ (Sel 1_B)	$173.4 \\ \pm 0.7$	246 ±2	5.27 ± 0.01	866 ±6	$118.6 \\ \pm 0.8$	1.06 ± 0.01	4.7 ± 0.2	15680 ±44	257 ±8
Sel $1_B + m_{U_3} \in [10, 40] \text{ GeV}$ (Sel 2_B)	$158.2 \\ \pm 0.7$	187 ±2	$0.0288 \\ \pm 0.0007$	462 ±4	76.4 ± 0.6	$0.337 \\ \pm 0.007$	0.77 ± 0.07	3097 ±19	12 ±2
$Sel 2_B + E^{miss} < 8 GeV $ $(Sel 3_{BA})$	$96.4 \\ \pm 0.5$	1.4 ± 0.2	$0.0268 \\ \pm 0.0007$	$155 \\ \pm 2$	0.19 ± 0.03	$0.152 \\ \pm 0.005$	0.32 ± 0.05	1412 ±13	$\begin{array}{c} 0 \\ \pm \delta < 2 \end{array}$
$Sel 2_B + E^{miss} > 8 GeV $ $(Sel 3_{BB})$	61.8 ±0.4	186 ±2	0.0020 ±0.00	307 ±4	76.2 ± 0.6	$0.185 \\ \pm 0.005$	$0.45 \\ \pm 0.06$	1685 ±14	12 ±2

$\mathrm{Sel}\ 3_{BA} + \Delta > 0 \ \mathrm{(Sel}\ 4_{BAA})$	51.5 ± 0.4	1.3 ±0.2	0.0248 ±0.0007	$\begin{array}{c} 137 \\ \pm 2 \end{array}$	0.19 ± 0.03	0.127 ± 0.004	0.21 ± 0.04	741 ±9	$0 \\ \pm \delta < 2$
$\mathrm{Sel} \ 4_{BAA} + m_{jj} \in [80, 110] \ \mathrm{GeV}$ $(\mathrm{Sel} \ 5_{BAA})$	44.8 ± 0.3	0.30 ± 0.07	$0.0005 \\ \pm 0.0001$	$\begin{array}{c} 101 \\ \pm 2 \end{array}$	0.011 ± 0.008	$0.064 \\ \pm 0.003$	0.20 ± 0.04	23 ±2	$0 \\ \pm \delta < 2$
Sel $5_{BAA} + m_{ll_3}^{\text{rec}} \in [190, 215] \text{ GeV}$ (Sel 6_{BAA})	40.6 ± 0.3	0.07 ± 0.04	$0.0005 \\ \pm 0.0001$	$\frac{40}{\pm 1}$	$0.005 \\ \pm 0.005$	$0.024 \\ \pm 0.002$	0.04 ± 0.02	10 ±1	$0\\\pm\delta<2$
$ \begin{array}{c} \text{Sel } 6_{BAA} + m^{\text{rec}}_{jj+ll_3} \in [80,110] \text{ GeV} \\ \text{(Sel } 7_{BAA}) \end{array} $	40.1 ± 0.3	0.07 ± 0.03	0.0005 ±0.0001	34 ±1	$0.005 \\ \pm 0.005$	0.022 ± 0.002	0.04 ± 0.02	8 ±1	$\begin{array}{c} 0 \\ \pm \delta < 2 \end{array}$

Cutflow for Z(jj)Z(II)Z*(II)

	Signal				Backgrou	ınd			
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW
One $Z(ll)$ & one $Z^*(ll)$ (Sel 0_B)	$206.8 \\ \pm 0.8$	270 ±2	5.97 ± 0.01	951 ±7	$130.5 \\ \pm 0.8$	1.17 ± 0.01	5.1 ± 0.2	28340 ±59	846 ±14
Sel $0_B + m_{ll} \in [80, 110] \text{ GeV}$ (Sel 1_B)	$173.4 \\ \pm 0.7$	246 ±2	5.27 ± 0.01	866 ±6	$118.6 \\ \pm 0.8$	1.06 ± 0.01	4.7 ± 0.2	15680 ±44	257 ±8
Sel $1_B + m_{U_3} \in [10, 40] \text{ GeV}$ (Sel 2_B)	$158.2 \\ \pm 0.7$	187 ±2	$0.0288 \\ \pm 0.0007$	462 ±4	76.4 ± 0.6	$0.337 \\ \pm 0.007$	0.77 ± 0.07	3097 ±19	12 ±2
$Sel 2_B + E^{miss} < 8 GeV $ $(Sel 3_{BA})$	$96.4 \\ \pm 0.5$	1.4 ± 0.2	$0.0268 \\ \pm 0.0007$	$155 \\ \pm 2$	0.19 ± 0.03	$0.152 \\ \pm 0.005$	0.32 ± 0.05	1412 ±13	$\begin{array}{c} 0 \\ \pm \delta < 2 \end{array}$
$Sel 2_B + E^{miss} > 8 GeV $ $(Sel 3_{BB})$	61.8 ±0.4	186 ±2	0.0020 ±0.00	307 ±4	76.2 ± 0.6	$0.185 \\ \pm 0.005$	$0.45 \\ \pm 0.06$	1685 ±14	12 ±2

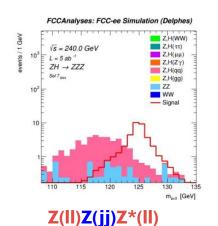
$\mathrm{Sel}\ 3_{BA} + \Delta < 0 \ \mathrm{(Sel}\ 4_{BAB})$	44.9 ± 0.4	0.11 ±0.05	0.0020 ± 0.0002	18.3 ± 0.8	$\begin{array}{ c c c }\hline 0\\ \pm \delta < 0.03\end{array}$	0.024 ± 0.002	0.11 ± 0.03	663 ±9	$\begin{array}{ c c }\hline 0\\ \pm \delta < 2\end{array}$
Sel $4_{BAB} + m_{jj} \in [80, 110]$ GeV (Sel 5_{BAB})	42.4 ± 0.4	0.11 ± 0.05	$\begin{array}{c} 2.8 \ 10^{-4} \\ \pm 0.8 \ 10^{-4} \end{array}$	$16.0 \\ \pm 0.8$	$\begin{array}{c} 0 \\ \pm \delta < 0.03 \end{array}$	0.017 ± 0.002	0.09 ± 0.03	87 ±3	$\begin{array}{c} 0 \\ \pm \delta < 2 \end{array}$
$\mathrm{Sel} \; 5_{BAB} + m_{ll_3}^{\mathrm{rec}} \in [195, 215] \; \mathrm{GeV} $ $(\mathrm{Sel} \; 6_{BAB})$	38.3 ± 0.4	0.02 ± 0.02	$\begin{array}{c} 1.2 \ 10^{-4} \\ \pm 0.5 \ 10^{-4} \end{array}$	$\frac{4.4}{\pm 0.4}$	$\begin{array}{c} 0 \\ \pm \delta < 0.03 \end{array}$	0.006 ± 0.001	0.02 ± 0.01	9 ±1	$\begin{array}{c} 0 \\ \pm \delta < 2 \end{array}$

Cutflow for Z(II)Z(vv)Z*(II)

<u> </u>	Signal				Backgrou	ınd			N°
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW
One $Z(ll)$ & one $Z^*(ll)$ (Sel 0_B)	$206.8 \\ \pm 0.8$	270 ±2	5.97 ± 0.01	951 ±7	$130.5 \\ \pm 0.8$	1.17 ± 0.01	5.1 ± 0.2	28340 ±59	846 ±14
$\begin{array}{c} \mathrm{Sel} \ 0_B \ + \ m_{ll} \in [80, 110] \ \mathrm{GeV} \\ \mathrm{(Sel} \ 1_B) \end{array}$	$173.4 \\ \pm 0.7$	246 ±2	5.27 ± 0.01	866 ±6	$118.6 \\ \pm 0.8$	1.06 ±0.01	4.7 ± 0.2	15680 ±44	257 ±8
Sel $1_B + m_{ll_3} \in [10, 40] \text{ GeV}$ (Sel 2_B)	$158.2 \\ \pm 0.7$	187 ±2	$0.0288 \\ \pm 0.0007$	462 ±4	76.4 ± 0.6	$0.337 \\ \pm 0.007$	0.77 ± 0.07	3097 ± 19	12 ±2
	$96.4 \\ \pm 0.5$	$\begin{array}{c} 1.4 \\ \pm 0.2 \end{array}$	$0.0268 \\ \pm 0.0007$	155 ±2	0.19 ± 0.03	$0.152 \\ \pm 0.005$	0.32 ± 0.05	1412 ±13	$\begin{array}{c} 0 \\ \pm \delta < 2 \end{array}$
$Sel 2_B + E^{miss} > 8 GeV$ $(Sel 3_{BB})$	61.8 ±0.4	186 ±2	0.0020 ± 0.0002	307 ±4	76.2 ±0.6	$0.185 \\ \pm 0.005$	$0.45 \\ \pm 0.06$	1685 ±14	12 ±2

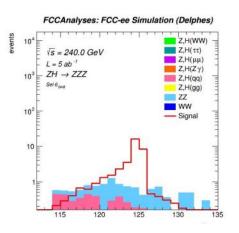
Sel $3_{BB} + m_{ll}^{rec} \in [123, 127] \text{ GeV}$	20.3	119	$2 \ 10^{-5}$	195	49.0	0.114	0.29	84	1.1
(Sel 4_{BBA})	± 0.42	±1	$\pm 2 \ 10^{-5}$	± 3	± 0.5	± 0.004	± 0.05	±3	± 0.5

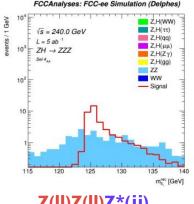
Cutflow for Z(vv)Z(II)Z*(II)


<u> </u>	Signal		Background								
Selection	$Z, H(ZZ^*)$	Z, H(WW)	$Z, H(\mu\mu)$	Z, H(qq)	Z, H(au au)	$Z, H(Z\gamma)$	Z, H(gg)	ZZ	WW		
One $Z(ll)$ & one $Z^*(ll)$ (Sel 0_B)	$206.8 \\ \pm 0.8$	270 ±2	5.97 ± 0.01	951 ±7	$130.5 \\ \pm 0.8$	1.17 ± 0.01	5.1 ± 0.2	28340 ±59	846 ±14		
$\begin{array}{c} \mathrm{Sel} \ 0_B \ + \ m_{ll} \in [80, 110] \ \mathrm{GeV} \\ \mathrm{(Sel} \ 1_B) \end{array}$	$173.4 \\ \pm 0.7$	246 ±2	5.27 ± 0.01	866 ±6	$118.6 \\ \pm 0.8$	1.06 ±0.01	4.7 ± 0.2	15680 ±44	257 ±8		
Sel $1_B + m_{ll_3} \in [10, 40] \text{ GeV}$ (Sel 2_B)	$158.2 \\ \pm 0.7$	187 ±2	$0.0288 \\ \pm 0.0007$	462 ±4	76.4 ± 0.6	$0.337 \\ \pm 0.007$	0.77 ± 0.07	3097 ± 19	12 ±2		
	96.4 ±0.5	$\begin{array}{c} 1.4 \\ \pm 0.2 \end{array}$	$0.0268 \\ \pm 0.0007$	155 ±2	0.19 ± 0.03	$0.152 \\ \pm 0.005$	0.32 ± 0.05	1412 ±13	$\begin{vmatrix} 0 \\ \pm \delta < 2 \end{vmatrix}$		
$Sel 2_B + E^{miss} > 8 GeV$ $(Sel 3_{BB})$	61.8 ±0.4	186 ±2	0.0020 ± 0.0002	307 ±4	76.2 ± 0.6	$0.185 \\ \pm 0.005$	$0.45 \\ \pm 0.06$	1685 ±14	12 ±2		

Sel $3_{BB} + m_{ll}^{rec} \notin [123, 127] \text{ GeV}$ (Sel 4_{BBB})	38.1 ± 0.4	$\begin{array}{c} 67 \\ \pm 1 \end{array}$	0.0020 ± 0.0002	112 ±2	$27.2 \\ \pm 0.4$	$0.070 \\ \pm 0.003$	0.16 ± 0.03	1601 ±14	11 ±2
$Sel 4_{BBB} + E^{miss} \in [45, 55] GeV$ $(Sel 5_{BBB})$	12.3 ± 0.2	$12.9 \\ \pm 0.5$	$\begin{array}{c} 0 \\ \pm \delta < 0.0002 \end{array}$	0.4 ± 0.1	$^{4.5}_{\pm 0.2}$	0.0040 ± 0.0007	$\begin{array}{c} 0 \\ \pm \delta < 0.03 \end{array}$	161 ±4	2.0 ± 0.7
	$12.0 \\ \pm 0.2$	$^{2.0}_{\pm 0.2}$	$\begin{array}{c} 0 \\ \pm \delta < 0.0002 \end{array}$	$\begin{array}{c} 0 \\ \pm \delta < 0.1 \end{array}$	3.1 ± 0.1	0.0002 ± 0.0001	$\begin{array}{c} 0 \\ \pm \delta < 0.03 \end{array}$	13 ±1	0.7 ±0.4

4 clear channels - variables used for their fit

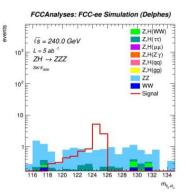

BEFORE SMOOTHING



Mass of the jet pair and the off-shell Z lepton pair

Mass of the 2 lepton pairs

Z(jj)Z(II)Z*(II)



Z(II)Z(II)Z*(jj)

Recoil mass of the first Z lepton pair

Mass of the 2 lepton pairs Z(vv)Z(II)Z*(II)

Smoothing is used to reduce statistical fluctuations of some backgrounds

Backup for mixed channels

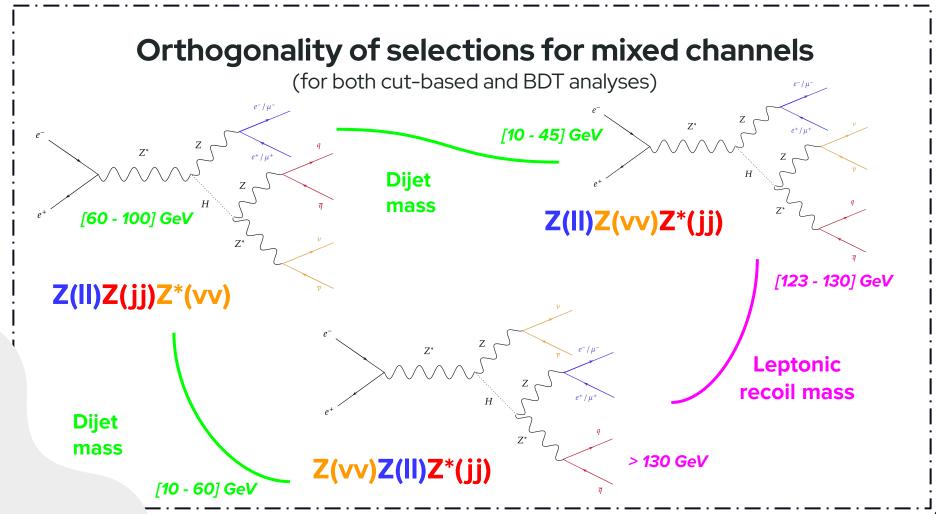
3 mixed channels - BDT Preselections

Preselections before BDT:

Z(II)Z(vv)Z*(jj)

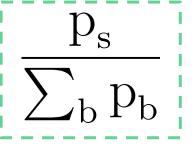
- $55 < m_{ll} < 115 \,\text{GeV}$
- $120 < m_{\rm rec} < 130 \,{\rm GeV}$
- $10 < m_{ij} < 60 \,\text{GeV}$
- $E^{miss} < 80 \, GeV$

Z(II)Z(jj)Z*(vv)


- $55 < m_{ll} < 115 \,\text{GeV}$
- $120 < m_{\rm rec} < 170 \,{\rm GeV}$
- $60 < m_{jj} < 120 \,\text{GeV}$
- $E^{miss} < 76 \,\text{GeV}$

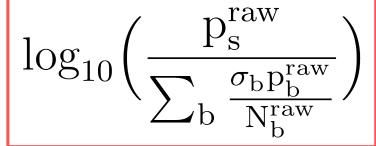
Z(vv)Z(II)Z*(jj)

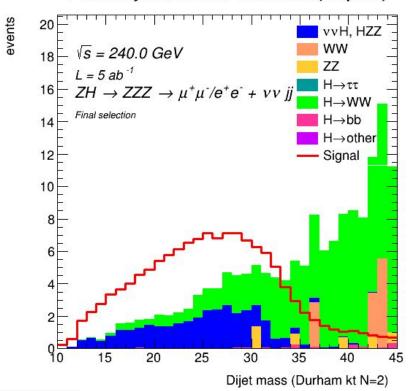
- $40 < m_{ll} < 100 \,\text{GeV}$
- $m_{\rm rec} > 130 \,\mathrm{GeV}$
- $10 < m_{ij} < 60 \,\text{GeV}$
- $100 < m_{\text{visible}} < 150 \,\text{GeV}$


Boosted decision tree classification:

- Trained on 6 classes (signal, ZZ, WW, ZH(WW), ZH(bb), ZH(tautau))
- Variables shown on the diagram on the right
- Output: <u>optimal</u> variables for S and B separation (likelihood ratio)

BDT Final output


Optimal variable to separate signal and background


Combination of the BDT evaluated scores to obtain the optimal variable

BDT Final output

ZH, Z(II)Z(vv)Z*(jj) - Fit on dijet mass

FCCAnalyses: FCC-ee Simulation (Delphes)

Fit results (uncertainty on H(ZZ*) cross section)

$$r = 1 \pm 0.090$$

$$\sim 9\%$$
 uncertainty

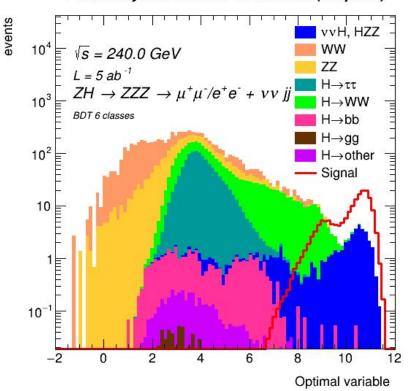
Included systematics:

- H(WW*) normalisation: 5%
- ZZ normalisation: 10%

$ZH, Z(II)Z(vv)Z^*(jj)$ - Selections for cut-based

Number of events for $L = 5ab^{-1}$									
Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	H(au au)	H(other)		
No cut (one Z(ll))	229	450664	84592	13270	36466	3674	7114		
$N_{\text{selected leptons}} = 2$	229	427481	84037	9942	34808	2806	7086		
$70 < m_{ll} < 105 \text{ GeV}$	221	303820	34760	9528	33580	2695	6842		
$123 < m_{rec} < 130 \text{ GeV}$	168	16552	5088	7204	25497	2023	5186		
$N_{ m jet~const~Durham~N=2}^{mean} > 7$	155	14955	1065	6930	25497	1	5127		
$10 < m_{jj} < 45 \text{ GeV}$	145	218	46	176	4	0	0		
$E_T^{miss} > 8 \text{ GeV}$	141	12	43	170	1	0	0		
$p_{jj} < 40 \text{ GeV}$	129	4	10	106	1	0	0		

Most reduced background(s)


$$S = 129 \qquad \frac{S}{\sqrt{B}} \sim 11.7 \qquad \frac{S}{B} \sim 1.06$$

$$\frac{S}{B} \sim 1.06$$

 $S_{\rm efficiency} \sim 0.56$ j $B_{\rm efficiency} \sim 2.0 \ 10^{-4}$

$ZH, Z(II)Z(vv)Z^*(jj)$ - Fit on BDT output

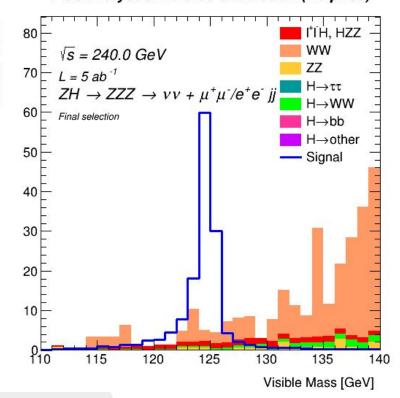
FCCAnalyses: FCC-ee Simulation (Delphes)

Fit results (uncertainty on H(ZZ*) cross section)

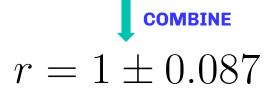
$$r = 1 \pm 0.074$$

 $\sim 7.4\%$ uncertainty

Included systematics:


- H(WW*) normalisation : 5%
- ZZ normalisation: 10%

Cut-based


 $\sim 9\%$

ZH, Z(vv)Z(II)Z*(jj) - Fit on visible mass

FCCAnalyses: FCC-ee Simulation (Delphes)

Fit results (uncertainty on H(ZZ*) cross section)

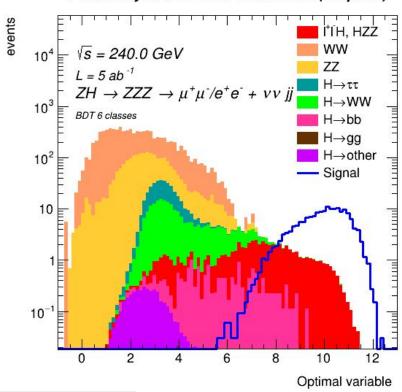
 $\sim 8.7\%$ uncertainty

Included systematics:

- H(WW*) normalisation : 5%
- ZZ normalisation: 10%

$ZH, Z(vv)Z(II)Z^*(jj)$ - Selections for cut-based

	ľ	Number of e	vents for L	$=5ab^{-1}$			
Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	$H(\tau\tau)$	H(other)
No cut (one Z(ll))	245	450664	84592	13270	36466	3674	7114
$N_{\text{selected leptons}} = 2$	245	427481	84037	9942	34808	2806	7086
$25 < E^{miss} < 75 \text{ GeV}$	236	51853	62778	2424	2074	1678	84
$110 < m_{vis} < 140 \text{ GeV}$	234	3170	19185	235	235	360	8
$10 < m_{jj} < 60 \text{ GeV}$	232	2254	5577	202	10	341	4
$N_{ m jet~const~Durham~N=2}^{mean} > 5$	228	183	1447	66	10	0	0
$70 < m_{ll} < 100 \text{ GeV}$	206	120	238	62	2	0	0
$E_T^{miss} > 10 \text{ GeV}$	202	23	238	61	1	0	0
$m_{rec} > 130 \text{ GeV}$	143	14	227	17	0	0	0


$$S = 143$$
 $\frac{S}{\sqrt{B}} \sim 8.90$

$$\frac{S}{B} \sim 0.55$$

$$S = 143$$
 $\frac{S}{\sqrt{B}} \sim 8.90$ $\frac{S}{B} \sim 0.55$ $\frac{S_{\text{efficiency}} \sim 0.58}{B_{\text{efficiency}} \sim 4.3 \cdot 10^{-3}}$

ZH, Z(vv)Z(II)Z*(jj) Fit on BDT output

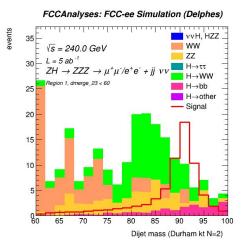
FCCAnalyses: FCC-ee Simulation (Delphes)

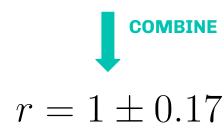
Fit results (uncertainty on H(ZZ*) cross section)

$$r = 1 \pm 0.069$$

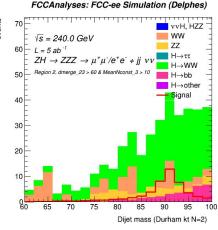
 $\sim 6.9\%$ uncertainty

Included systematics:


- H(WW*) normalisation : 5%
- ZZ normalisation: 10%


Cut-based

 $\sim 8.7\%$


ZH, Z(II)Z(jj)Z*(vv) - Fit on dijet mass in 2 regions

Fit results (uncertainty on H(ZZ*) cross section)

 $\sim 17\%$ uncertainty

Included systematics:

- H(WW*) normalisation: 5%
- ZZ normalisation: 10%

ZH, Z(II)Z(jj)Z*(vv) - Selections for cut-based

	N	Number of e	vents for L	$=5ab^{-1}$			
Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	H(au au)	H(other)
No cut (one Z(ll))	237	450664	84592	13270	36466	3674	7114
$N_{\text{selected leptons}} = 2$	236	427481	84037	9942	34808	2806	7086
$81 < m_{ll} < 101 \text{ GeV}$	213	271292	20160	8857	31289	2500	6370
$124 < m_{rec} < 138 \text{ GeV}$	198	22026	6981	8224	29088	2318	5922
$N_{\text{jet const Durham N}=2}^{mean} > 8$	197	19907	1315	7880	29087	0	5848
$60 < m_{jj} < 100 \text{ GeV}$	178	9192	617	1655	2474	0	58
$ \cos(\theta_{miss}) < 0.93$	165	688	604	1515	2090	0	26
min angle $\frac{\text{miss}}{\text{jet}} > 0.4$	156	580	576	1420	577	0	6
$N_{\text{leptons with } p>2} = 2$	132	145	499	612	52	0	0
$5 < E^{miss} < 45 \text{ GeV}$	126	100	296	537	51	0	0
$d_{12} > 2000$	121	86	184	448	48	0	0
Region 1 : $d_{23} < 60$	69	46	76	89	17	0	0
Region 2: $d_{23} > 60$ and	49	37	68	260	31	0	0
$N_{\text{jet const Durham N}=3}^{mean} > 10$							

$ZH, Z(II)Z(jj)Z^*(vv)$ - Selections for cut-based

Region 1 (signal-enriched)

$$S = 69$$

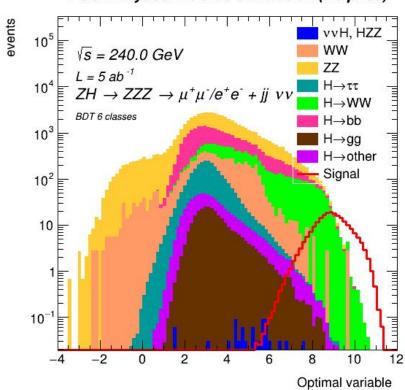
$$\frac{S}{\sqrt{B}} \sim 4.57$$

$$\frac{S}{B} \sim 0.303$$

$$S_{\rm efficiency} \sim 0.29$$

$$B_{\rm efficiency} \sim 3.8 \ 10^{-4}$$

$$S = 49$$


$$\frac{S}{\sqrt{B}} \sim 2.46$$

$$\frac{S}{B} \sim 0.124$$

$$S_{\rm efficiency} \sim 0.21$$

 $B_{\rm efficiency} \sim 6.6 \ 10^{-4}$

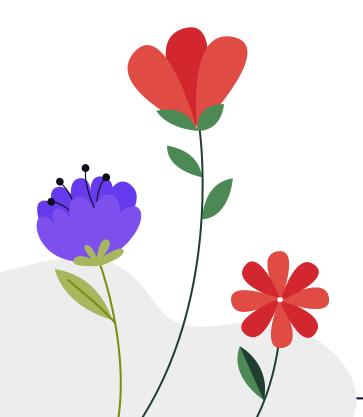
ZH, Z(II)Z(jj)Z*(vv) Fit on BDT output

FCCAnalyses: FCC-ee Simulation (Delphes)

Fit results (uncertainty on H(ZZ*) cross section)

$$r = 1 \pm 0.107$$

$$\sim 10.7\%$$
 uncertainty


Included systematics:

- H(WW*) normalisation: 5%
- ZZ normalisation: 10%

Cut-based

 $\sim 17\%$

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**