Status of calorimeter simulation in the FCC framework

Lorenzo Pezzotti INFN Bologna

2nd FCC Italy&France Workshop Venezia, 4-6 November 2024

Outlook

- The aim of this short presentation is to spark discussion on calorimetry activities in the FCC software
- This parallel session will cover many calorimetry aspects (performances on physics benchmarks, detector designs, test-beam results, ...)
- Here the focus is on the FCC software tools: namely geometries and reconstruction tools for IDEA, ALLEGRO and CLD

Calorimetry @ALLEGRO

- The ALLEGRO calorimeter design
 - Highly-granular LAr calorimeter inside a 2 T solenoid
 - baseline Pb+LAr (with denser option W+LKr)
 - Light coil (0.76 X₀) inside same low-material cryostat (< 0.1 X₀) as ECal
 - TileCal like hadronic calorimeter after the solenoid
 - baseline WLS fibers with SiPM readout at outer radius
 - or with CALICE-like SiPM-on-tile readout
- Status within FCC full-sim
 - DD4hep barrel geometry well established and available in <u>k4geo/ALLEGRO_01</u>
 - DD4hep endcap geometry also available but more prone to changes

ALLEGRO ECAL

- Barrel:
 - 1536 2-mm-thick straight Pb absorbers (inclined at 50.4°) and 1.2-2.4 mm LAr gaps
 - ✤ 11 longitudinal compartments, 40 cm deep (~22 X₀)
 - $\Delta\theta \sim 10$ (2.5) mrad for regular (strip) cells, $\Delta\phi \sim 8$ mrad
 - Variations to be explored: LKr active medium, W absorbers, absorber thickness and outer radius, absorber shape (straight or tapered)

More at M. Mlynarkova 2024 ECFA Workshop talk

ALLEGRO ECAL

♦ Barrel:

- 1536 2-mm-thick straight Pb absorbers (inclined at 50.4°) and 1.2-2.4 mm LAr gaps
- ✤ 11 longitudinal compartments, 40 cm deep (~22 X₀)
- $\Delta\theta \sim 10$ (2.5) mrad for regular (strip) cells, $\Delta\phi \sim 8$ mrad
- Variations to be explored: LKr active medium, W absorbers, absorber thickness and outer radius, absorber shape (straight or tapered)

Endcap:

- Endcap region more complex than barrel one,
 a k4geo *φ*-symmetric *Turbine* calo is being implemented
 - \checkmark LAr gaps thickness increases with the radius \rightarrow non-uniformity of the sampling fraction and response
 - Possible solutions: three concentric wheels with different number of absorbers or tapered absorbers with increasing thickness

NFN

ALLEGRO HCAL

- TileCal-like design fully implemented in k4geo
 - W.r.t. FCC-hh the Pb plates were removed as the HCAL acts as return yoke for the central solenoid
- Barrel:
 - 5 mm steel absorber plates alternating with 3 mm scintillator plates
 - * 13 radial layers in the barrel region, 140 cm length (8-9 λ)
 - Segmentation of ∆θ ~ 2 mrad (grouping 3-4 tiles along z), 128 modules in φ using 2 tile/module
 → ∆φ = 25 mrad

ALLEGRO HCAL

- TileCal-like design fully implemented in k4geo
 - W.r.t. FCC-hh the Pb plates were removed as the HCAL acts as return yoke for the central solenoid

Barrel:

- 5 mm steel absorber plates alternating with 3 mm scintillator plates
- * 13 radial layers in the barrel region, 140 cm length (8-9 λ)
- Segmentation of ∆θ ~ 2 mrad (grouping 3-4 tiles along z), 128 modules in φ using 2 tile/module → ∆φ = 25 mrad
- Endcap:
 - ✤ 6 9 22 radial layers fo the endcap

ALLEGRO calorimetry tools

Reconstruction:

- Both sliding window and topological clustering working in the barrel region
 - Implemented for standalone HCAL and ECAL+HCAL simulation of single particles
 - Currently the topological clustering is being implemented for the end-cap region

Calibration:

Implemented MVA calibration of cluster energy, using boosted decision tree (BDT), and compared to cell-based approximate calibration using 100 GeV π^- → constant term in had energy resolution improved

To be done:

 Combine ECal and HCal calorimeter information with particle flow algorithms

Monolithic dual-readout calo @IDEA_o1

- Optical-fiber dual-readout calorimeter implemented in k4geo as <u>IDEA_01</u>
 - Monolithic as fibers are simply inserted in copper-based towers (trapezoids)
 - ★ measure both electromagnetic & hadronic components with two different channels
 → excellent energy resolution for hadrons via event-byevent dual-readout correction
 - Projective geometry with a uniform sampling fraction
 - more fibers in the rear than the front
 - Longitudinally unsegmented

Monolithic dual-readout calo @IDEA_o1

• Digitization:

- ✤ A SiPM simulation library is developed using
- parameterized inputs from the datasheet (dark counts, crosstalk, afterpulses, saturation, noise, ...) and
- included in the key4hep stack as an external library

Reconstruction:

- Reconstruction codes are implemented as Gaudi algorithm including a novel 3D reconstruction using Fourier analysis with timing information from SiPM signals
- Isolated hits position successfully reconstructed along fibers → excellent example of timing in calorimetry

Dual-readout crystals @IDEA_o2

Segmented Crystal Electromagnetic Precision Calorimeter (SCEPCal):

- Projective homogeneous (PBWO₄) crystal calorimeter:
 - Each crystal is longitudinally segmented with front/rear section (6:16 ratio 22 X₀ (~20 cm))
 - Dual-readout capability ensured by two dedicated SiPMs instrumented on the rear section
 - Timing layer placed in front comprises two layers of fast-scintillating LYSO crystals with opposite orientation
 - New DD4hep implementation recently carried out [github]
 - To be added together with the dual-readout tubes calo in k4geo towards IDEA_o2

More at A. L. Centeno FCC Full Sim meeting talk

Tubes-based dual-readout calo @IDEA_o2

- Novel dual-readout calorimeter design using
 - a new construction technique housing optical-fibers into capillary-tubes
 - A first prototype was tested at CERN and used to validate em-shower simulation [article]
 - A new prototype, named Hidra, is being built and tested at CERN (see A. Pareti's <u>talk</u>)

5/11/2024

More at L. Pezzotti FCC Full Sim meeting talk

Tubes-based dual-readout calo @IDEA_o2

- Novel dual-readout calorimeter design using
 - a new construction technique housing optical-fibers into capillary-tubes
 - A first prototype was tested at CERN and used to validate em-shower simulation [article]
 - A new prototype, named Hidra, is being built and tested at CERN (see A. Pareti's <u>talk</u>)
- DD4hep geometry leveraging this design has been proposed for both the barrel and the endcap
 - ✤ Extensive cpu time to propagate showers in this geometry has been reduced to $\simeq 7$ s/evt for 100 GeV e⁻
 - Next goal is to explore clustering with available algorithms

More at L. Pezzotti 2022 ECFA Higgs Factories talk

Dual-Readout Particle Flow studies for IDEA_02

- A 2022 <u>article</u> explored a dual-readout Particle Flow algorithm to combine calo-clusters and tracks in a longitudinally segmented dual-readout calorimeter (almost identical to the IDEA_o2 design)
- Even with just two sections, clear cluster-tracks matching was possible and an improvement in the energy resolution (w.r.t. dual-readout performance) was found
- It would be nice to repeat this study in key4hep using IDEA_o2

5/11/2024

Calorimetry @CLD

- Well-established calorimeter simulation in <u>key4hep</u> optimized for reconstruction with Particle Flow Algorithms
 - Short calo fully inside the solenoid

♦ ECAL:

- 40 layers (22 X₀ deep) of 1.9 mm tungsten absorber, and
- 0.5-mm-thick silicon sensors with
 5×5 mm² granularity

+ HCAL:

- ✤ 44 layers (5.5 (+1) λ) of 19 mm steel absorber, and
- 3-mm-thick scintillator tiles with 3×3 cm² granularity

Pandora Particle Flow @key4hep

- CLD calo reconstruction uses the Pandora Particle Flow Algorithm (PandoraPFA) by CALICE
- Integration of PandoraPFA in key4hep is ongoing in order to use it across multiple detector models
 - Study of PandoraPFA are being conducted on Nobel Liquid Argon Calorimeter of FCC, with some delicate aspects, *e.g.*
 - Pandora uses radiation lengths and other material properties to determine shower shapes, but
 - ◆ ALLEGRO ECAL has a very different geometry w.r.t. CLD → dynamic methods are used to retrieve such information
 - First PandoraPFOs could be observed for the LAr Calorimeter but more work is needed to correctly reconstruct its energy

*considering only code compliant with the key4hep standards

Status of calorimetry in the FCC framework*

