EM Calorimeters Design concepts overview

Nicolas **Morange**, *IJCLab*

Marta Tornago'24

2nd Italy-France FCC Workshop, 5/11/2024

CNIS

Laboratoire de Physique des 2 Infinis

Outstanding Physics ⇒ Strong Requirements on Detectors

<u> Vincent Boudry's Talk</u>

WP1: SiW Ecal

Baseline Ecal in ILD, CLD

- 30 layers, 2.8 mm tungsten absorber, 24 Χ₀
- 0.5 mm thick silicon sensors with 5×5 mm² granularity
- O(10⁸) cells
 - Super high granularity for PFlow reconstruction
 - > Tight integration: compact and hermetic
- EM resolution ~17%/√E
- Challenges:

N. Morange (IJCLab)

- Adaptation to FCC-ee (cooling, power)
- Granularity re-optimisation ?
- Study addition of timing
- System aspects: design engineering module

- Work ongoing to study the implications of SiW in FCC-ee
- Estimation of expected fluxes in each layer of the calo
 - "CaloFlux" tool
 - Impact on rates and on power
- Re-optimization of number and thickness of layers ($30 \rightarrow 26$)
- Granularity optimization: towards dynamic granularity ?
- Cooling studies
- Impact of timing in PFlow performance
- Improvements on hybridization

WP2: ALLEGRO ECal

Ecal for ALLEGRO Detector Concept

High granularity (O(10⁶) cells) noble liquid (LAr/LKr) Ecal using straight readout electrodes

• Good compromise for granularity, resolution (5-8%/ \sqrt{E}), stability, uniformity

Main R&D topics

- Optimise design for performance based on simulations
- R&D on electrodes and absorbers
- Mechanical design
- Cold and warm frontend electronics
- Aim: testbeam module in 2028

- Extensive studies of electrode prototypes
 - Confirm cross-talk « 0.1% achievable
 - Inform trade-offs noise / cross-talk
- Preparation of next generation electrode protos
 - Features several design options to guide final design choices
- Progress on simulations
 - Photon / π⁰ separation results guide granularity choices
- Mechanical design ongoing
 - Holding + precise positioning of absorbers and electrodes
 - Good progress towards testbeam module design

Italy-France FCC Worksh

WP3: MAXICC / CalVision

Ecal for IDEA detector concept

- Homogeneous EM calorimeter based on segmented crystals with dual-readout
 - High density scintillating crystals with good cherenkov yield
 - Dedicated optical filters and SiPMs to readout S and C from same active element
 - Promise $3\%/\sqrt{E}$ + DR capability

Main R&D Topics

- Identification of optimal crystals, optical filters and SiPM candidates
- Proof-of-concept with lab measurements and prototypes
- EM scale prototype for beam test

Rapid progress in 2024 !

- Integration in key4hep making good progress
 - Digitization implemented
 - Resolution studies underway
 - Integration in IDEA fullsim ongoing

• Testbeam campaigns

- FNAL 2023, DESY and CERN 2024
- Understand photon modeling, improve optical coupling, understand Cerenkov yield
- See Marcello's talk for details !

• Plans for 2025

- Build two full containment prototypes (BGO and PWO)
- Then testbeam end of September

10 GeV photon (green) conversion to electron (red)

WP3: GRAINITA

A novel type of calorimeter ~ next-gen shashlik

- Use grains of inorganic scintillating crystal readout by wavelength shifting fibers
 - Light spatially confined by refraction/reflections

- Excellent expected EM resolution: $2-3\%/\sqrt{E}$

 - Using BGO or ZnWO₄ crystals 16-channel prototype ZnWO₄ + liquid built in 2024 and tested with cosmics

Main R&D topics

- R&D on crystal grains
- Aim for larger prototype to validate on testbeam

Opportunity for testbeam in H2 at CERN

- ~4M pions, ~200k muons
- Confirmation of light confinement
- Confirmation of possibility of $1\%/\sqrt{E}$ due to photon statistics
- First non-uniformity studies
 - 9% light yield difference for MIP close/far from a fiber
 - Seems enough for low constant term

Muon/HL

444 + / - 1

4.415

Confirmation of light confinement

- France and Italy communities strongly involved in EM Calos R&D
- Si-W, MAXICC and ALLEGRO Ecal all integrated in projected detector concepts
- Areas for collaboration identified through DRD6
 - Map to the Working Groups: Testbeams, Software
 - And electronics: frontend might be similar (Si-W, LAr), backend/DAQ should be harmonized as much as possible

Supplementary Material

FCC-ee Detector Concepts

Calorimeters for HET factories

An extensive set of requirements

- Energy resolution: "only" for photons and neutral hadrons
 - But: ideally photons as low as 200 300 MeV
- Dynamic range: 200 MeV 180 GeV
 - vs LHC: 6 TeV jets !
- Granularity: PID, disentangle showers for PFlow
 - But: how granular exactly ?
- Hermeticity, uniformity, calibrability, stability
 - Low systematics for precision measurements
 - Complex system-level engineering questions
- No need to be particularly fast in principle
 - But: can precise timing help in reconstructing showers more accurately?

A quest for ultimate jet energy resolution

PFlow PFlow PFlow

- Target: $\sigma(E)/E = 30\%/\sqrt{E}$ (GeV)
 - Typical figure of merit: W/Z boson separation
 - Actual use: variety of hadronic measurements
- What granularity do we really need at HET Factories?
- New calos concepts bring new ideas (crystals DR study)

- Total

3

50

ms₉₀/E_{jet} [%]

---- Confusion

150

E_{JET}/GeV

100

200

250

Other

---- Resolution ---- Leakage

FCC unique challenges

FCC-ee: O(10¹¹) B and T at 45 GeV !!!

- Some physics channels require very high EM resolution
- τ physics: reconstructing the decays
 - Means π^0 reconstruction and ID
 - Count close-by π⁰
 - Granularity
- BSM, e.g ALP searches
 - Photon resolution, photon pointing

$\begin{array}{c} Recon \to \\ Gen \downarrow \end{array}$	$\pi^{\pm}\nu$	$\pi^{\pm} \pi^0 \nu$	$\pi^{\pm} 2\pi^0 \nu$	$\pi^{\pm} 3\pi^{0} \nu$	$\pi^{\pm} 4\pi^{0} \nu$	
$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002	
$\pi^{\pm}\pi^0\nu$	0.0374	0.9020	0.0586	0.0016	0.0002	
$\pi^{\pm} 2\pi^0 \nu$	0.0090	0.1277	0.7802	0.0808	0.0022	
$\pi^{\pm} 3\pi^{0} \nu$	0.0036	0.0372	0.2679	0.5972	0.0910	
Table: Each r	Each row shows the fraction of e.g. $ au o \pi^\pm u$ decays classified					

as each of the considered channels

The home of calorimeter concepts: DRD6

Detector R&D (DRD) collaborations implement the ECFA Detector R&D Roadmap

- DRD6 on Calorimetry with 4 work packages and several transversal activities (TB, Materials, SW, ...)
- Many DRD6 calo projects aim at FCC
 - Presenting only **selected examples** to highlight main R&D directions
 - See <u>last week's DRD6 meeting</u> for details about the projects and the latest progress

• Mission:

- Bring a diverse set of calorimeter technologies to a level of maturity such that they can be considered for a technology selection of future experiments
- Maturity demonstrated with **full-scale prototypes**

A lot of fun for all detectors

	Aggressive	Conservative	Comments	
Beam-pipe	$rac{X}{X_0} < 0.5\%$	$rac{X}{X_0} < 1\%$	$B\to K^*\tau\tau$	
Vertex	$\sigma(d_0)=2\oplusrac{15}{p\mathrm{sin}^{3/2} heta}\mu\mathrm{m} \ rac{X}{X_0}<1\%$	-	$B ightarrow K^* au au$ R_b, R_c	
	$\delta L = 5$ ppm	-	$\delta au_ au < 10~{ m ppm}$	
Tracking _	$\frac{\sigma_p}{p} < 0.1(0.2)\%$ at $\sqrt{s} = 90~(240)~{\rm GeV}$	÷	$\delta M_H = 4 \ { m MeV} \ \delta \Gamma_Z = 20 \ { m keV} \ Z o au \mu$	
	$\sigma_{ heta} < 0.1~{ m mrad}$	'ж	$\delta_{\mathrm{BES}} < 0.2\%$ for $\delta\Gamma_Z = 40~\mathrm{keV}$	
ECAL	$rac{\sigma_E}{E} = rac{3\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{10\%}{\sqrt{E}}$	${ m Z} ightarrow u_e ar{ u_e} \gamma$	
	$\Delta x imes \Delta y = 2 imes 2 ext{ mm}^2$	$\Delta x \times \Delta y = 5 \times 5 \text{ mm}^2$	au polarisation boosted π^0 decays bremsstrahlung recovery	
	$\delta z = 100 \ \mu{ m m}, \ \delta R_{ m min} = 10 \ \ \mu{ m m} \ ({ m at} \ 20^{\circ})$	-	alignment tolerance for $\delta \mathcal{L} = 10^{-4}$ with $\gamma \gamma$ even	
HCAL _	$\frac{\sigma_E}{E} = \frac{30\%}{\sqrt{E}}$	$\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E}}$	${ m H} ightarrow sar{s}, \; car{c}, { m gg}, \; { m invisible} \ { m HNLs}$	
	$\Delta x \times \Delta y = 2 \times 2 \ \mathrm{mm}^2$	$\Delta x \times \Delta y = 30 \times 30 \ \mathrm{mm^2}$	${ m H} ightarrow sar{s}, \; car{c}$, gg	
Muons	low momentum (p < 1 GeV) ID	-	$B_s ightarrow u ar{ u}$	
Particle ID	$3 - \sigma \ \text{K}/\pi$ separation up to $p = 30 \ \text{GeV}$		$egin{array}{c} { m H} o s ar{s} \ b o s u ar{ u} \ldots \end{array}$	
LumiCal	tolerance $\delta z = 100 \ \mu\text{m}, \ \delta R_{\min} = 1 \ \mu\text{m}$ acceptance 50-100 mrad	-	$\delta \mathcal{L} = 10^{-4}$ target (Bhabha)	
hermeticity	-	-	$ u \bar{ u} H, H \rightarrow \text{invisible}$	