

The µ-RWELL technology for the IDEA MUON and pre-shower system

G. Bencivenni (*)

On behalf of Bologna, Ferrara, LNF, Torino WP5-RDFCC

(*) Laboratori Nazionali di Frascati – INFN, Frascati (IT)

2nd FCC Italy-France Workshop, Venezia 4th Nov 2024

IDEA apparatus & the μ-RWELL

Pre-shower: high resolution detector after the magnet to maximize the energy resolution of the dual readout calorimeter and tag π^0 and γ .

Muon system: reconstruct and tag the muon using three layers within the iron return yoke, and reconstruct the LLP.

Requirements

Tiles: 50x50 cm² with X-Y readout Efficiency >98% Space resolution:

- ⚫ **100μm (preshower)**
- ⚫ **500μm (muon)**

Instrumented surface/FEE

Preshower:

 \bullet 130m², 520 det., 3x10⁵ chs. (0.4 mm strip pitch) **Muon:**

⚫ **1500m² , 6000 det., 5x10⁶ chs., (1.2mm strip pitch)**

GOALS

- \cdot **Reliability** \oplus **high gain**
- **Easy Manufacturing**
- **Mass production** → Technology Transfer to Industry
- **FEE cost reduction** → custom made ASIC

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 $\,$

The μ-RWELL: the layout

The **μ-RWELL** is a **resistive MPGD, with a GEM derived amplification stage,** composed of two elements:

- **Cathode**
- **μ-RWELL PCB**
- ‒ a **WELL** patterned **kapton foil** (with **Cu-layer on top**) acting as **amplification stage**
- ‒ a **resisitive DLC film** with **ρ50÷100 MΩ/□**
- ‒ a standard **readout PCB** with **pad/strip** segmentation

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008

The μ-RWELL: principle of operation

Applying a suitable voltage between **the top Cu-layer and the DLC the "WELL" acts as a multiplication channel** for the ionization produced in the conversion/drift gas gap.

The charge induced on the resistive foil is dispersed with a *time constant,* τ C [*M.S. Dixit et al., NIMA 566 (2006) 281*]:

- the **DLC** surface resistivity $\rightarrow \rho$
- the **capacitance per unit area**, which depends on the distance between the resistive foil and the pad/strip readout plane $\rightarrow t$
- the **dielectric** constant of the insulating medium $\rightarrow \varepsilon$.

- The main effect of the **introduction of the resistive stage** is **the suppression of the transition from streamer to spark**, with a consequent **reduction of the spark-amplitude**
- As a drawback, t**he capability to stand high particle fluxes is reduced**, but **appropriate grounding schemes** of the resistive layer solves this problem (*see High-Rate layouts*)

 \overline{t}

The R&D steps

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024

1-D Tracking studies

With a **0.4 mm strip pitch** and **0.15 mm strip width**, no effects were observed within this resistivity range. Additionally, DLC resistivity uniformity is not a critical parameter for spatial resolution.

Resistivity scan

R/O pitch scan

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024

1-D tracking (inclined tracks)

For **inclined tracks** and/or in presence of high B fields, the **charge centroid (CC)** method gives a **very broad spatial resolution** on the anode-strip plane (typical effect observed on MPGDs).

Implementing the **μTPC mode[1]** , using the knowledge of the **drift time** of the electrons **each ionization cluster is projected inside the conversion gap**, and **the track segment** in the gas gap **is reconstructed.**

^[1] introduced for ATLAS MMs by T. Alexopoulos

M. Giovannetti et al., *On the space resolution fo the μ-RWELL***, 2020 JINST 16 P08036**

Combining the CC and μTPC reconstruction (through a wheighted average) **a resolution well below 100 μm** could be reached over a wide incidence angle range.

7

2-D Tracking layouts

Operation at **lower gas gain** wrt the «COMPASS» r/out (X-Y r/out decoupled) **- 0.4 mm (0.8mm) X-Y strip pitch** for **pre-shower (Muon).**

N.2 u-RWELLs 1D (2 \otimes 1D) u-RWELL - Capacitive Sharing r/out u-RWELL TOP r/out

The **charge sharing** is performed through the **capacitive coupling** between a **stack of layers of pads** and **the r/out board. - 1.2 mm X-Y strip pitch.**

Reduce the **FEE channels**, but the total **charge is shared between** the **X & Y** r/out.

The **TOP-readout layout** allows to work at **low gas gain** wrt the «COMPASS» r/out (X-Y r/out decoupled). **- 0.8 mm X-Y strip pitch.**

X strips patterned on the TOP of the amplification stage introduces **dead zone in the active area.**

8

2D layouts performance

0.4 mm X-Y strip pitch

1.2 mm X-Y strip pitch $\sigma_{\rm x}$ = 142 μ m $\sigma_{\rm v}$ = 147 μ m

0.8 mm X-Y strip pitch $\sigma_{\rm x}$ = 173 μ m $\sigma_{\rm v}$ = 250 μ m

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024

PROFILE 2D

RESIDVAL 2D

2D layouts performance

- **2x1D:** spatial resolution \leq 200 μ m (pitch 0.8 mm), low voltage operating point \sim 520V, efficiency \sim 95%
- **CS:** spatial resolution $\leq 200 \mu m$ (with pitch 1.2 mm), high voltage operating point, ≥ 600 V, efficiency $\sim 98\%$
- **Top r/out:** spatial resolution **< 200µm (pitch 0.8 mm), low voltage** operating point 520V, **efficiency 70%**

New technology solutions

- μ -RGroove \rightarrow evolution of the top/r-out layout, where the amplification stage is based on **«grooves»** rather than **«wells».** This design could facilitate the implementation of the **strip readout** on the **top**, **without introducing dead-zones (Z. Yi in RD51**).
- μ -RWELL with CS layout with pad readout \rightarrow new design in which the readout PCB is segmented into **pads instead of strips**. This choice allows for collecting **all the charge on a single readout electrode** with an increase of FFE channels (30%). With a pad size of \sim 1 cm², a **spatial resolution of 300 µm** has been achieved (**M. Iodice in RD51**).
- **GEM +** μ **-RWELL with CS layout with strip/pad readout** \rightarrow a hybrid design featuring a **GEM pre-amplification** stage to **lower the operating point**, greatly **enhancing detector stability** while maintaining **high spatial performance** with millimeter strip-pitches

large pad resolution ~320 µm \rightarrow factor 1/30 of the pad size

GEM + µ-RWELL

3 different gains for the μ-RWELL 3 different detectors

GEM gain @ 450V ≈ 20 **A very stable detector:** it doesn't show **any hint of instabilities** even at a **gain of 60k.** We stopped because the FEE saturates.

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **Fig. 12** Senezia 4th Nov 2024 Fig. 12

Tracking technologies comparison

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024

Technology Transfer to Industry

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **First Constant Constant Constant**

Detector Manufacturing & TT

The **μ-RWELL_PCB is a rigid-flex PCB** based on **SBU technology**, that is **compatible with standard industrial processes**.

The **ELTOS** is the industrial partner **involved in the manufacturing of the µ-RWELL**.

The **ELTOS SpA** was founded in 1980 in Arezzo, Italy.

The Company has a **large experience in the construction of MPGDs,** including technologies such as **Thick-GEM (THGEM)** and **MicroMegas**.

The **involvement of a private industry** in this R&D **opens the way** for the use of μ-RWELL technology **across various fields of applications.**

Detector Manufacturing flow chart

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **16** November 2024

Detector manufacturing steps

Step 0 – Detector PCB design @ **LNF**

Filos

- **Step 1 – CERN_INFN DLC (C.I.D)** sputtering machine installed @ **CERN**
	- In operation since Nov. 2022
	- Production by **LNF-INFN** technical crew
- **Step 2 –** Producing readout PCB by **ELTOS**
	- pad/strip readout

Step 3 – DLC patterning by **ELTOS**

• photo-resist \rightarrow patterning with BRUSHING-machine

Step 4 – DLC foil gluing on PCB by **ELTOS**

• Large press available, up to 16 PCBs workable simultaneously

Step 5 – Top copper patterning by **CERN**

• Cu amplification holes image and HV connections by Cu etching

- **Step 6 –** Amplification stage patterning by **CERN**
	- Pl etching \rightarrow amplification-holes

Step 7 – Electrical cleaning and detector closure @ **CERN**

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1996, 1996, 1997, 1998, 1998, 199**

1

DLC sputtering

The **CID** (CERN-INFN-DLC) sputtering machine, a **joint project between CERN and INFN**, is used for preparing the **base material of the detector**. The potential of the DLC sputtering machine is:

- ⚫ **Flexible substrates** up to **1.7×0.6m²**
- ⚫ **Rigid substrates** up to **0.2×0.6m²**

In **2023,** the activity on CID focused on the **tuning** of the **machine on small foils: good** results in terms of **reproducibility and uniformity.**

> • No mask \Box Mask

 ϕ o α ⁵

220 +/- 30 MOHm/sq

z position (cm)

Ar 150 sccm, C_2H_2 3 sccm, p_{proc} 2E-3 mbar

In **2024**, the challenge has been the **sputtering of large foils:**

- ✓ **DLC+Cu sputtering on 0.8×0.6m² successfully done (May/June 2024)**
- ✓ **DLC on 1.7×0.6m² large 0/50/0 Apical foils successfully done (June 2024)**
- ✓ **DLC on 1.7×0.6m² large 5/50/0 Apical foils still to be done (July 2024)**

 $\frac{1}{2}$ 350

300 250

The graphite target The three external cathodes

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1898 - 1899 1899 1899 1899 18**

Electrical Hot Cleaning

At the end of the manufacturing process at CERN, a **conditioning procedure** is performed:

- Standard **PCB washing**
- **Electrical cleaning in dry air** (**90°C** in an oven) from **300 V to 700 V** (each step with current $<$ 1 nA)
- **Detector closure** and final **test at 600 V in ambient air**

Pilot co-production test

The 16 co-produced prototypes have been extensively tested with X-rays:

- **15/16 are fine**
- **1/16 needs to be re-cleaned**

Production yield > 93%

Co-production pilot results

- 16 co-produced protos have been delivered and tested
- **10/16 (LNF) + 5/16 (CERN)** are fine
- **1/16 should be re-cleaned**

Characterized with **X-ray gun** \rightarrow Gas gain measurement

Max-gain vs resistivity

- **16** co-produced protos have been delivered and tested
- **10/16 (LNF) + 5/16 (CERN)** are fine
- **1/16 should be re-cleaned**

The **maximum gain** is larger for $\rho \ge 40$ **MOhm/square**

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1986 - 1987 1998 1998 1999 1999**

Max-gain: large size vs small size

CS_01 13 MOhm/sq, area 46x38 cm² **M2R1** 260 MOhm/sq, area 30x25 cm²

For large-size detectors, the max-gain increases with the DLC resistivity, although, compared to the small-size detectors, the **gain curve for the larger size is shifted towards lower values.**

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024

Summary

The μ-RWELL is a well-established technology with excellent performance.

- Several 2D readout layouts have been tested, demonstrating spatial resolution up to 100 µm over a large particle incidence angle range $(0^{\circ} - 45^{\circ})$.
- New layouts to improve stability, maximize gain, and enhance overall detector performance are under study.
- A significant effort is being made to well define and simplify the manufacturing process and facilitate the technology transfer to industry.
- The DLC sputtering process $-$ a crucial manufacturing step $-$ is now fully under our control.

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1986 - 1987 124** 24

SPARE SLIDES

Front end electronics: TIGER

Readout chain

The full readout chain is well known.

A complete setup is under deployment in Beijing for the **BESIII CGEM-IT** where a cosmic ray data taking is ongoing since Dec. 2019

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **2008** 21

TIGER chip features

- 64 channels
- Event rate 100 kHz/ch
- Input dynamic range up to 50 fC
- Time resolution < 5 ns
- ENC < 2000 e⁻ rms with 100 pF input capacitance

WP5 2024 – Front-end electronics

Detector under test:

- Active area = $400x50$ mm²
- Resistivity = 80 M Ω/\Box
- Strip pitch = $0.4 1.6$ mm
- Strip width $= 0.15$ mm
- 1D readout

The data taking consisted of <u>HV scan</u>, <u>Drift scan</u> and <u>Thr. scan</u>, with Ar:CO₂:CF₄

Data **analysis is ongoing**, and will be the task of the **next months**

WP5 2024 – Front-end electronics

Similar results are obtained with **TIGER** electronics and **APV**, even though small differences are present in the two setups (noise, threshold): **1-2 fC with APV and 2-4 fC with TIGER.**

The grounding scheme must be improved in future setups.

A spatial resolution of **100 µm** is achieved with a **0.4 mm strip pitch**, a shift between the efficiency plateaus of **0.4 mm** and **0.8 mm** pitch is observed, as expected (due to larger noise on the 0.8 mm detector)

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1998 - 1999 12: 1999 12: 1999 12:** 29

Testing CF₄-free gas mixtures

The gas mixtures based on **CF⁴ are effective for fast electron drift** but are not considered eco-friendly.

Alternatives to CF⁴ are needed. Here, we compare the performance of a μ-RWELL using **Ar:CO² (70/30)** and **Ar:CO² :CF⁴ (45:15:40).** A shift in the working point of approximately **50-100V** is observed due to the different Argon ratios, along with a **reduction in the plateau** width of about **50V**.

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1998 - 1999 12: 1999 12: 1999 12: 1999** 30

Testing CF₄-free gas mixtures

Comparing the time performance of the two gas mixtures:

- **12 ns** is achieved with Ar with **Ar:CO²**
- **7.8 ns** is achieved with **Ar:CO² :CF⁴**

The contribution of the electronics (approximately **2 ns**) and time-walk are included.

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1998 - 1999 12: 1999 12: 1999 12: 1999** 31

Spot Effect for SRL – Manufacturer plot

From the mathematical model of the resistive stage of a μ-RWELL:

1. detectors with **same size** but **different resistivity** exhibit a **rate capability** scaling as the **inverse of their resistivity.**

2. for the **SRL**, **increasing the active area** from **10x10 cm² to 50x50 cm²** the **rate capability should go down few kHz/cm²**

3. By using a **DLC ground sectoring every 10 cm**, **large (50x50cm²) detectors** could achieve **rate capability** up to **100kHz/cm²** (with X-ray)

> **Different primary ionization** ⇒ **Rate Cap.m.i.p. = 3×Rate Cap.X-ray**

Irradiation test of DLC and μ-RWELL

Bare DLC foils

- ⚫ **DLC foils**: monitoring of the resistivity of two foils under x-ray irradiation.
- ⚫ **μ-RWELL detectors**: prototypes irradiated with different radiation.

μ-RWELL DETECTORS

Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401-404

Development of μ -RWELL detectors for the upgrade of the tracking system of CMD-3 detector

L. Shekhtman*, G. Fedotovich, A. Kozyrev, V. Kudryavtsev, T. Maltsev, A. Ruban Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia Novosibirsk State University, 630090, Novosibirsk, Russia

ARTICLE INFO

Keywords: Tracking detectors Micro-RWELL Micro-pattern gas detectors **ABSTRACT**

An upgrade of tracking system of Cryogenic Magnetic Detector (CMD-3) is proposed using microresistive WELL technology. CMD-3 is a general purpose detector operating at the VEPP-2000 collider at Budker Institute of Nuclear Physics and intended for studies of light vector mesons in the energy range between 0.3 GeV and 2 GeV. The new subsystem consists of double-layer cylindrical detector and the end-cap discs. Two prototypes, micro-RWELL and micro-RWELL-GEM were built and tested. Gas amplification of micro-RWELL detector was measured with several gas mixtures and maximum gain between 20000 and 30000 was observed. However, maximum gain is fluctuating from measurement to measurement by a factor of 2 and thus a safety margin of 2-3 is needed to provide reliable operation of the device. In order to increase the signal GEM was added to micro-RWELL, new prototype was tested with the same gas mixtures and gains above $10⁵$ have been demonstrated. Time resolution achieved for both prototypes are 7 ns for micro-RWELL and 4 ns for micro-RWELL-GEM.

L. Shekhtman, Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401–404

Drift Gap: Shekhtman **3mm** – LNF+Roma2 **6mm**

Transfer Gap: Shekhtman **3mm** – LNF+Roma2 **3mm**

Developed for **CMD3 upgrade disks** (4 sectors 50×50cm²)

The GEM **must be** stretched: sizes larger than 50×50cm² could be critical (depending on the gas gaps size).

 \circledR

Check for

μ-RWELL + GEM: gas gain

Fig. 4. Gain as a function of voltage on the top electrode of μ -RWELL for different gas mixtures. Voltage across the drift gap is 500 V.

Fig. 5. Gain as a function of voltage on the top electrode of μ -RWELL for GEM voltages providing additional gain of 50-100 and for different gas mixtures. Voltage across the drift gap is 500 V.

L. Shekhtman, Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401–404

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1998 - 1999 12: 1999 12: 1999 12: 1999** 35

Low Mass μ-RWELL

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1998 - 1999 12: 1999 12: 1999 12: 1999** 36

Technology spread

In the last years there has been a significant spread of the technology among several research groups working on Nuclear and Sub-Nuclear experiments

- **1. CLAS12 @ JLAB (USA):** the upgrade of the muon spectrometer
- **2. EPIC @EIC (BNL - USA):** endcap tracker disks based on a hybrid GEM+µRWELL technology
- **3. X17 @ n TOF EAR2 (CERN):TPC with a µRWELL based amplification stage, for the detection of the X17 boson**
- **4. TACTIC @ YORK Univ. (UK):** radial TPC for detection of nuclear reactions with astrophysical significance
- **5. Muon collider:** R&D for a digital hadron calorimeter
- **6. CMD3 (RU):** GEM+ µRWELL disk for the upgrade of the tracking system
- **7. UKRI (UK):** thermal neutron detection with pressurized ³He-based gas mixtures

High-rate layouts evolution

Silver **G**rid

38

2018 - 2020

Extensive R&D has been performed to optimize the DLC grounding, enabling the detector to withstand up to 1MHz/cm²

- **No grid alignment issues, scalable to large size large dead zone** (>15%)
- **Easily engineered, because based on SBU technology**

G. Bencivenni, LNF-INFN 388

High-rate layouts: PEP layouts comparison

2022 2023

PEP-Groove: DLC grounding through conductive groove to ground line

Pad R/O = 9×9mm²

Grounding:

- **- Groove pitch = 9mm**
- **- width = 1.1mm**
- **→ 84% geometric acceptance**

PEP-DOT:

DLC grounding through conductive dots connecting the DLC with pad r/outs Pad R/O = 9×9mm² Grounding:

- **- Dot pitch = 9mm**
- **- dot rim = 1.3mm**
- **→ 97% geometric acceptance**

DOT ≈ **plated blind** vias

Groove vs DOT (X-ray characterization)

Groove vs DOT (test beam characterization)

APV25 based Fee

TB2023 LHCb RWELL Average Efficiency Efficiency Including GROOVE/DOT zones (Ed = 3.5 kV/cm - pions) DOT 0.8 \rightarrow 0.6 \rightarrow FOI 5 - DOT \leftarrow FOI 5 - GR 0.4 \leftarrow FOI 3 - DOT ٨ Groove \rightarrow FOI 3 - GR 0.2 Δ 500 550 600 650 400 450 HV \overline{V}

PEP DOT – time performance (preliminary)

FATIC based Fee

TB-2023 at H8C with **preliminary version of the FATIC chip** (developed by Bari Group) in the framework of the R&D for the **LHCb-Muon upgrade**. A new **test beam foreseen next Nov. '24** with **an updated version of the ASIC**, aiming to reduce the **FEE thr down 3 – 3.5 fC**

Detector washing and electrical cleaning

At LNF, we are installing a **detector washing station** with a stainless-steel tank and a high-pressure carwashing machine using deionized water.

After washing, the detector is placed in an **oven at 90°C**. After 24 hours, it is gradually powered by increasing voltage from 300V to 680V, following Rui's guidelines.

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **Fisher Constant Constant Constant**

The DOCA

Cross-section of a μ-RWELL with a conductive line on the DLC (High-Rate scheme).

The concept of **DOCA** (Distance-Of-Closest-Approach) before discharge is fundamental for the **stability** of the detector.

The **DOCA** is defined as the **distance between** the edges of the **conductive lines** and its **closest amplification hole**.

The **DOCA (before discharge)** as a function of the DLC **resistivity**, for different **voltages**.

The study has been performed with a custom tool, with two thin conductive movable tips.

Prepreg thickness optimization

28µm thick prepreg maximize both the **amplitude of the signa**l induced on the pad readout, and **S/N ratio** (measurement done with APV25)

G. Bencivenni, LNF-INFN – 2nd FCC Italy-France Workshop, Venezia 4th Nov 2024 **1998 - 1999 12: 1999 12: 1999 12: 1999**