

Update on the PICOSEC Micromegas R&D

Thomas Papaevangelou

IRFU, CEA, Université Paris-Saclay

on behalf of the PICOSEC Collaboration

2nd FCC Italy & France Workshop

Venice, Italy 4-6 November 2024

Motivation

State-of-art Timing with a few 10's of Picosecond

- **High Luminosity LHC**:
	- ATLAS/CMS simulations: ~150 vertexes/crossing (RMS 170 ps).
	- Mitigate pile-up background.
	- Clean reconstruction of the events \rightarrow ~20 ps timing + tracking info.
- High demand for precise timing detectors for physics (TOF particle identification), but also for medical and industrial applications

PID techniques: Alternatives to RICH methods, J. Vavra, accepted in NIMA 876, 2017, <https://dx.doi.org/10.1016/j.nima.2017.02.075>

Solid state detectors

Gaseous detectors

- Avalanche PhotoDiodes: ($\sigma_t \sim 20$ ps for single cells)
- Low Gain Avalanche Diodes ($\sigma_t \sim 30$ ps)
- HV/HR CMOS ($\sigma_t \sim 60$ ps)

• **Large part the of detector R&D community focuses on timing**

Extra detector requirements:

- Large area coverage
- Resistance to aging effects
- Cost efficient

MPGDs! Need for improvement >2 orders of magnitude

Resistive Plate Chambers (MRPCs): $(σ_t ~ 30 ps)$

Micro-Pattern Gaseous Detectors ($\sigma_t \sim 1$ ns)

The PICOSEC Micromegas concept

Proposal by **Ioannis Giomataris**:

Replace gas ionization by Čerenkov light & use a photocathode to create the primary electrons

- ➢ *Micromegas had already shown timing resolution <700 ps for single photoelectrons,*
	- \rightarrow possibly limited by deuterium pulsed lamp jitter
- J Derre et al. Fast signals and single photoelectron detection, NIM A 449 (1999) 314

Can MPGDs reach $\mathcal{O}(10ps)$ resolution for MIPS?

NO !

Timing Limitation factor: *stochastic nature of ionization*

- \sim 5 mm conversion gap is needed for \sim 100% efficiency
- Random distribution of $~5$ e-clusters per MIP
- Last cluster position jitter

 \rightarrow time jitter of a few ns

Timing performance could be improved by:

- \triangleright simultaneous creation of primary electrons at the same distance from the mesh
- shorten conversion region → limit diffusion, achieve pre-amplification

The PICOSEC Micromegas concept

T. Papaevangelou et al, "Fast Timing for High-Rate Environments with Micromegas", EPJ Web Conf. 174 (2018) 02002, MPGD2015 *[https://doi.org/10.1051/epjconf/201817402002](https://doi.org/10.1016/j.nima.2018.04.033)*

- Modification of MM geometry:
	- Smaller Drift Gap \rightarrow eliminate ionization
	- Higher applied Drift Voltage \rightarrow pre-avalanche
- Additional Components in MM:
	- Cherenkov radiator
	- Solid converter \rightarrow Photocathode Prompt photoelectrons
- A particle produces Čerenkov light in the crystal.
- Photons extract electrons from the photocathode.
- Electrons multiplied in a two stage Micromegas.

Timing resolution defined by:

- **single photoelectron time jitter** (aim < 100 ps)
- **EXECUTE:** Number of photoelectrons $\left(\sim \frac{1}{\sqrt{M}}\right)$ $N_{p.e.}$ → **efficient photocathode** (aim > 10 p.e. / MIP)

 $C22$

The PICOSEC Micromegas R&D timeline

Project evolution

- ➢ 1 st phase
	- Conception of first prototypes
	- Proof-of-principle
- $\geq 2^{nd}$ phase
	- Understanding & optimization
	- **Photocathodes**
	- 1st attempt with multipad detectors
- ➢ 3 rd phase
	- Large area detectors $(10 \times 10 \text{ cm}^2)$
	- Robust photocathodes
	- Resistive anodes
	- FEE & BEE
	- ➢ *Towards implementation for physics experiments*

Started as an RD51 common-fund project: Fast Timing for High-Rate Environments: A Micromegas Solution awarded on 03/2015

CEA involvement:

RADIAMM: CEA PTC/ID (IRFU - LIST - IRAMIS)

➢ R&D on the improvement of the PICOSEC Micromegas performance & robustness (*photocathode*)

PIMENT: ANR (IRFU - CENBG - IJCLAB - LIST)

- ➢ transfer the well-established detector topology to a larger scale (*electronics, Micromegas etc.*)
- \triangleright adapt to the specific needs of experiments (ENUBET, EIC, HL-LHC…)

The PICOSEC Micromegas Collaboration

AUTH (Greece) I. Angelis, K. Kordas, C. Lampoudis, I. Maniatis, I. Manthos, K. Paraschou, D. Sampsonidis, A. Tsiamis, S. E. Tzamarias **CEA-IRFU, LIST, LIDYL** (France) R. Aleksan, S. Aune, D. Desforge, I. Giomataris, F. Jeanneau, A. Kallitsopoulou, M. Kebbiri, P. Legou, T. Papaevangelou, N. Salsé, M. Vandenboucke, M. Pomorski, T. Gustavsson

CERN (Switzerland) J. Bortfeldt, F. Brunbauer, C. David, K.J. Floethner, M. Lupberger, M. Lisowska, H. Müller, E. Oliveri, G. Orlandini, F. Resnati, L. Ropelewski, L. Scharenberg, T. Schneider, M. van Stenis, R. Veenhof

HIP (Finland) F. García

LIP (Portugal) M. Gallinaro

NCSR Demokritos, (Greece) G. Fanourakis

NTUA (Greece) Y. Tsipolitis

Stony Brook University (USA) P. Garg

Jefferson Lab (USA) K. Gnanvo

USTC (Hefei, China) J. Liu, Y. Meng, B. Qi, X. Wang, Z. Zhang, Y. Zhou

Ruder Boškovic Institute (Croatia) A. Utrobicic

University of Zagreb (Croatia) M. Kovacic

University of Pavia (Italy) D. Fiorina, M. Brunoldi

Univeristy of Virginia (USA) S. White

The PICOSEC Micromegas detector

- ➢ **Small, single anode prototypes** (~1 cm²) to:
	- study the PICOSEC concept
	- optimize gas / geometry / voltages
	- test photocathodes with particle beams
- **Example 3 Large, segmented anode prototypes** (10×10 cm²) to:
	- prove scalability to large areas
	- study sharing of Čerenkov light among pads
	- study resistive anode technologies
	- develop & test FEE

Usual gas mixture: **Ne** + 10% **CF4** + 10% **C2H⁶**

single anode 1 cm

CRZ

7 channel anode **1** cm 19 channel anode 1 cm

100 channel anode \Box **1 cm**

96 channel anode □ 1 cm

Detector testing: laser beam

Unique capabilities of the **FLUME** setup at the IRAMIS/LIDYL laser facilities @ CEA Saclay:

- ➔ *Study the single photoelectron timing performance*
- ➔ *Understand and optimize the detector*

FLUME setup:

- ➢ IR Ti:S laser with pulse width **120 fs**
- ➢ **λ = 267-285 nm** after doubling
- \triangleright Energy ~ 10 -100 pJoule / poulse
- \triangleright Spot size: ~1 mm²
- \triangleright Repetition 9 kHz 4.75 MHz
- ➢ Light attenuators (fine micro-meshes 10-20% transparent)
- ➢ t⁰ reference: fast PD (**σΤ~10 ps**)

 $C22$

Detector testing: particle beams

Particle Beams @ CERN SPS H4 Beamline

- Muons (80-150GeV)
	- 8cm diameter of beam
	- 10⁵ muons/spill (measured rate ~kHz/cm²)
- Pions, electrons (30-80GeV)
- ➢ Evaluate prototype performance:
	- Time resolution
	- Detection efficiency
- \triangleright Photocathode efficiency ($\langle N_{p,e} \rangle$ / MIP)
- \triangleright Test homogeneity / border effects
- \triangleright Light / charge sharing

The setup

- Tracking telescope with GEMs
- MCP PMTs as t_0 reference devices & triggering
- Several positions for prototype testing

CRZ

1st phase: proof-of-principle

Fime Resolution (ps)

1350

1390

200 \bullet Anode 450 V \blacksquare Anode 475 V \triangle Anode 500 V * Anode 525 V 150 100 50 200 250 300 350 400 450 Drift Voltage (V)

Best time resolution for 1 photo-electron:

76.0 \pm **0.4 ps** ($V_d/V_a = -425V / +450V$, 200 µm drift)

➔ *improves strongly with higher drift field, less with anode field*

J.Bortfeldt, et al., "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", NIM A 903 (2018) 317 *<https://doi.org/10.1016/j.nima.2018.04.033>*

 $C22$

cea

ideal amplification gap \rightarrow Optimization of the preamplification avalanche \rightarrow improve timing

2nd phase: understanding the detector

Main findings:

- SAT time walk seen in single pe data is explained:
	- SAT reduces with avalanche length
	- Long avalanches \rightarrow big e-peak charge
	- **SAT reduces with e-peak charge**

SAT & Timing resolution are determined by:

- The drift path of the primary photoelectron
- \rightarrow number of photoelectrons in avalanche and its length

Detector modeling

Best time resolution for 1 photo-electron: 44.0 ± 1.0 ps @ V_d / V_a = -525V / +275V, 120 μm drift gap Sohl Lukas, "Development of PICOSEC-Micromegas for fast timing in high rate environments", PhD Thesis, CEA Saclay 17/12/2020,<https://www.theses.fr/2020UPASP084> thomas.papaevangelou@cea.fr example and the 2nd Italy & France FCC Workshop 4-6 November 2024, Venice, Italy

cea

2nd phase: detector optimization

12

2018-2021

2nd phase: the photocathode issue

A typical CsI photocathode used in a test beam

- ➢ Difficult handling & storage due to **high hydrophobicity**
- ➢ Photocathode is damaged during intense pion beams: **sparks**, **high ion backflow** (25-75% for high drift fields)

New photocathodes

Xu Wang et al, proc MPGD2019

MgF2 crystals with DLC photocathode

1.5 nm 2.5 nm 5 nm 7.5 nm 10 nm

- ➢ Diamond-Like Carbon (DLC) or Boron Carbide (B4C)
- \triangleright Polycrystalline Diamond or thick diamond films as electron emitters (*M. Pomorski*)
- \triangleright Pure metallic (Al, Cr, ...)

Photocathode protection

- ➢ Protection layers (LiF, MgF2,…)
- \triangleright New detector structure: double mesh Micromegas
- ➔ Important: **improve resolution** for **single photoelectrons** through **detector optimization**

Fully contained tracks R<2mm from the center of any pad

$2nd$ phase: Scalability \leftrightarrow planarity

The importance of planarity

- 19-hexagonal pad prototype,
- MgF_2 , CsI, 200µm drift gap

Variation on timing resolution & gain:

- Among different pads
- Along a single pad area
- **→ Non uniformity of the drift field gap**

S. Aune et al, "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", Nucl. Instrum. Meth.A 993 (2021) 165076, https[://doi.org/10.1016/j.nima.2021.165076](https://doi.org/10.1016/j.nima.2021.165076)

S. Tzamarias, AUTH

 0.05

 0.1

 0.15 $SAT (ns)$

cea

 -0.1

 -0.05

 $\bf{0}$

 9 _{0.15}

Ongoing Development (3rd phase)

Towards an engineered PICOSEC MM module : multiple directions in detector development

Scalable MM Detector

- Prove the performance in a multichannel setup
- Flatness (Planarity < 10μm)

Pixelated readout

Development of front-end & back-end readout electronics for the prototypes

(LP2I Bordeaux/ CEA/ Auth)

Application in ENUBET

- *T0 tagger and/or embedded in a calorimeter*
- *Muon monitoring at the hadron dump*

Robustness & Efficiency

- Research on various photocathode materials (Replace CsI with B4C, DLC,…)
- Resistive anode technologies

 $C22$

Scalability ➔ importance if planarity

- Three possible approaches for modular prototypes with 10x10 cm^2 active zone :
- **Rigid, ceramic-core PCB for the MM readout**
	- Crystal coupled to the PCB with spacers
	- MgF2 crystal & MM board will be decoupled from the chamber
	- Second PCB will be used for signals towards the amplifiers

Operational since 2021 (CERN-GDD). Similar approach for:

- **thermal bonding Micromegas** (USTC)
- **micro-Rwell** (Jefferson Lab)

• **The ATLAS NSW Approach**

Risk to damage the bulk MM

2021-2024

• **Advantage:**

- Low material budget on the detector
- Allow the fabrication of large flat boards

Commissioned July 2024 (CEA)

• **Longer pillars MM module**

• Pressed against Cherenkov radiator

Risk to damage the photocathode

10x10 PICOSEC Micromegas (CERN)

and thicker MM board material (4 mm instead 2 mm). 0.65 mm FR4 0.3 mm thick Readout par Copper 50 um thickness ceramic core 1 mm thick

100 channel anode 1 cm

Resolution homogeneity

MM BOARD design: use more rigid (ceramics instead FR4

• Uniform over all area

A. Utrobicic et al. *"*A large area 100-channel PICOSEC Micromegas detector with time resolution at the 20 ps level", *JINST* 18 (2023) 07, C07012, <https://doi.org/10.1088/1748-0221/18/07/C07012>

"Global" behavior ➔ excellent homogeneity

2021-2024

Y. Angelis, E. Chatzianagnostou, I. Maniatis, S. Tzamarias, AUTH

- 180μm drift gap
- CsI photocathode

Resistive anodes

- Advantages of the resistive technology
	- ➢ Elimination of destructive effects of discharges
	- Stable operation in harsh environment (high flux, mixed particle field)
	- ➢ Improve position reconstruction

Optimize resistive anode technology maintaining good timing resolution

- Different prototypes (single pad 100 pads)
- Different technologies (resistive DLC foils / double DLC layers / capacitive sharing, resistive micro-Well)

→ Focus on Timing properties

- Testing different resistivity values & architectures
- Ensure the homogeneity of prototype response over the full area
- Spatial resolution studies

Resolution <20 ps with CsI photocathodes has been reached

M. Lisowska et al. "Towards robust PICOSEC Micromegas precise timing detectors", JINST 18 (2023) 07, C07018: <https://doi.org/10.1088/1748-0221/18/07/C07018>

- First tests in 2018 → OK *(L. Sohl thesis)*
- Detailed modeling *(D. Janssens thesis)*
- Optimization of resistivity (*M. Lisowska thesis*)
- Testing different resistivity values & architectures
	- Ensure the homogeneity of response
	- Spatial resolution studies *(A. Kallitsopoulou ongoing)*
- **Implementation on 100-pad prototypes**
	- CERN
	- CEA (thin PCB)
	- USTC (thermal bonding MM)
	- JLAB (μRwell)

 $10⁵$

 10^{6}

Surface resistivity $\lceil \Omega / \square \rceil$

 10^{8}

Large area, resistive anode detectors

Several pads of the 100-channel module (CERN) were characterised during particle beam measurements

Prototype equipped with

- **CsI photocathode** achieved time **resolution** of **σ < 18 ps**
- **DLC photocathode** achieved time **resolution** of **σ < 35 ps**

for individual pads and fully contained events

M. Lisowska, PhD thesis dissertation, 2024

Spatial resolution testg:

- *7-pad prototype*
- *with hexagonal pads*
- *200kΩ/*
- *B4C photocathode*

A. Kallitsopoulou, preliminary

Thermal bonding Micromegas (USTC)

Design Scheme of the 10×10 PICOSEC MM (USTC)

- 100 channels of 1cm*1cm pads
- 104 \times 104 mm² MgF₂ crystal as photocathode
- Resistive Micromegas with **germanium coating**

Y. Meng *"PICOSEC Micromegas Precise-timing Detectors Towards Large-scale Application and Optimization*", *MPGD 2024*, <https://indico.cern.ch/event/1453371/contributions/6146437/>

Manufacturing the 10×10 PICOSEC MM (USTC)

- Magnetron sputtering technology to coat DLC
- Thermal bonding Method for making resistive Micromegas (Resistivity~ 50 MΩ/sq)
- Adhesion of MM Board with Ceramic Board to ensure mechanic strength

104mm Photocathode

Gas Frame

Adhesion of MM Board with Ceramic Board

20

Thermal bonding Micromegas ➔ **20**×**20 cm²**

2 approaches towards 20×20cm²:

- Tile of 10×10 cm² modules
- Tile of 10×10 cm² crystals on large MM board.

Tested at SPS H4, Sep. 2024. Preliminary performance:

- Gain **>10⁶**
- Uniformity of σ = 32.3% (assembling of crystals in the detector)
- Time resolution with **CsI** photocathode: **σ ≈ 25ps** (pad's center)
- Tested with DLC/B4C photocathodes, analysis ongoing

Design of the 20×20 PICOSEC MM (USTC)

- Structure similar to that of the 10×10 PICOSEC MM
- Assembling of 4 104 \times 104 \times 3 mm³ MgF₂ as radiator
	- MgF2 crystals placed directly on the frame with cylindrical pins (Φ1.5) for positioning
	- Kapton films (12.5μm) to compensate for thickness variation
- FR4 board bonded with a ceramic plate, and screws added on the edge to further strengthen

Y. Meng *"PICOSEC Micromegas Precise-timing Detectors Towards Large-scale Application and Optimization*", *MPGD 2024*,<https://indico.cern.ch/event/1453371/contributions/6146437/>

Micromegas on thin PCB + stiffener

Advantage:

- Low material budget on the detector
- Allow the fabrication of **large flat boards** with a **mosaic of 10×10 cm² crystals**

1 st prototypes tested July / Sep 2024

- $10MO/\square$ Resistive prototypes
- PCB thickness: 0.8 / 1.6 mm
- Detector flatness using stiffener (Roisel)
- Square pads 1cm
- $MgF₂$ crystal + DLC photocathode
- Amplifier cards deported using long lines and multipin connectors

1st look on the data:

- Homogeneous gain / timing (~10%)
- Small degradation of performance due to signal lines & connectors
- Improved version in progress

A. Kallitsopoulou. PhD thesis, ongoing

μRwell PICOSEC

Single anode - µRWELL PICOSEC structure 10×10 μRWELL-PICOSEC Prototype

- Best performance for a pattern of 120 µm pitch, 100 µm outer diameter, 80 µm inner diameter holes
- **σ^t = 23.5 ps** for CsI photocathode
- σ_t = 37 ps for DLC photocathode

Prototype tested in LED setup

- μRWELL-PICOSEC with the optimal pattern: 120 µm pitch, 100 µm outer diameter, 80 µm inner diameter holes
- Preliminary time resolution with CsI photocathode: **σ^t ~50 ps** (@CERN SPS H4 Beam Test, July 2024) → partially due to drift gap non uniformity and poor photocathode quality
- *Analysis is ongoing*

100-pads µRWELL-PICOSEC PCB

Large µRWELL-PICOSEC in beam at CERN

Y. Meng *"PICOSEC Micromegas Precise-timing Detectors Towards Large-scale Application and Optimization*", *MPGD 2024*,<https://indico.cern.ch/event/1453371/contributions/6146437/>

Robust & efficient photocathodes

- Systematic study of carbon based photocathodes
	- DLC direct deposition on MgF2 crystls (CERN / USTC)
	- B_4C with Cr substrate (CEA / CERN / USTC)
	- Systematic characterization in monochromators (CERN/USTC)
	- Ageing studies
	- Particle beam tests in 2024 (April, July, now)

X. Wang et al. "A novel diamond-like carbon based photocathode for PICOSEC Micromegas detectors", e-Print: [2406.08712](https://arxiv.org/abs/2406.08712) [physics.ins-det]

M. Lisowska et al. "Photocathode characterisation for robust PICOSEC Micromegas precisetiming detectors", e-Print: [2407.09953](https://arxiv.org/abs/2407.09953) [physics.ins-det]

- Detailed modeling of optical properties & experimental studies (R. Aleksan / A. Kallitsopoulou)
	- Optimization of the light transmission / p.e. yield

Important outcome

- For 3 mm thick $MgF₂$ and CsI (Q.E. from a Hamamatsu commercial PMT) expected yield **~36 p.e.**
- Experiment: **10-11 p.e.** (for optimized CsI thickness)
	- ➔ reflections due to large impact angle
	- **→** optimization of metallic substrate matching the refractive index (**Cr** → **Ti**). First tests July 2024, more systematic in Sep 2024. Expected p.e. **factor of ~2 more –** analysis ongoing

Robust photocathodes

Diamond-Like Carbon

- DLC photocathodes, thickness 1.5 3.5 nm, were characterised during particle beam measurements
- **Detector with a 1.5 nm DLC** deposited directly on the radiator, **exhibited σ = 31.9 ± 1.3 ps**;
- To enhance UV photon production, a **5 mm MgF² radiator** with a 2.5 nm DLC was tested

M. Lisowska. PhD thesis *dissertation*, 2024

 $C22$

Robust photocathodes

Boron Carbide

- B_4C photocathodes deposited at CEA-Saclay and ESS showed promising results
- Samples of **3 mm MgF²** + **3 nm Cr** + **B4C** (7.5 15 nm)
- **Detector with a 9 nm B4C** and a 3 nm Cr interfacial layer **exhibited σ = 34.5 ± 1.5 ps**;

M. Lisowska. PhD thesis *dissertation*, 2024

Pixelated PICOSEC Detector: FEE & BEE

→ Development if frond-end & back-end electronics (~ 100 channels) for detector testing

Signal digitization \rightarrow SAMPIC digitizers (IJCLab, IRFU)

• Development of a 256-channel system

RF-amplifiers (CERN / Zagreb University)

• 10 ch amplifierboards (M.Kovacic, A. Utrobicic)

A. Utrtobicic et al. "Single channel PICOSEC Micromegas detector with improved time resolution", e-Print: 2406.05657 [physics.ins-det]

Lucian Scharenberg

FastIC ASIC (CERN)

- Positive or negative input with intrinsic amplification
- 8 readout channels
- \sim 2 MHz per channel (time & energy)
- \sim 50 MHz per channel (time only)
- Tested with PICOSEC detector @CERN SPS H4, Sep. 2024

L. Scharenberg *"Fast-timing and high-granularity readout of MPGDs: FastIC and Timepix4*", *MPGD 2024*,<https://indico.cern.ch/event/1453371/contributions/6146454/>

Detector & electronics optimization

Improvement of the timing performance by reducing external component limitations:

- *thinner pre-amplification gap*
- *enhanced HV stability*
- *reduced noise level*
- *improved signal integrity*
- *dedicated amplifiers*

Metallic anode, 10 mm Ø time resolution of **σ = 12.5 ± 0.8 ps!** Resistive anode, 10 mm Ø

time resolution of **σ = 12.5 ± 1.4 ps!**

A. Utrtobicic et al. "Single channel PICOSEC Micromegas detector with improved time resolution", e-Print: 2406.05657 [physics.ins-det]

PICOSEC Micomegas summary

- *PICOSEC Micromegas R&D activity* ➔ *an exciting quest, aiming at a huge improvement of timing precision of MPGDs* (> 2 orders of magnitude)
- Ongoing R&D aiming at the development of robust & performant scalable detectors
	- ➢ **Several technologies for 10×10 cm² detectors**
	- \triangleright First implementation of 20x20 cm² prototype
	- ➢ Robust photocathodes with good efficiency
	- ➢ Detector optimization / alternative gasses

Major results (**CsI** photocathode - records)

- ➢ <Np.e.> / MIP **10 – 11**
- \triangleright σ \sim **13 ps**, with single anodeprototypes (\varnothing =1cm)
- ➢ **σ^t < 24 ps 10×10 cm²** , prototypes (100 channels)

Major results (robust detectors)

- ➢ **10×10 cm²** prototypes resistive anode (100 channels)
- ➢ **σ^t ~ 30 - 35 ps** for 150 GeV muons, with **robust B4C or DLC** photocathode,
- $\langle N_{\text{p}} \rangle$ / MIP $\approx 3 4$
- A significant number of publications and conferences over the last few years including 6 PhD theses completed or ongoing – more to follow
- *Towards implementation of the technology to physics experiments ?*

W WY

Prospects: Picosec MM on ENUBET?

Follow up on ν Cross-section measurements

CERN NP06/ENUBET(**E**nhanced **N**e**U**trino **BE**ams from kaon **T**agging)

- ENUBET is aimed:
	- At designing a narrow-band beam @ GeV scale
	- Having control of the neutrino flux & energy
- ENUBET characteristics facility
	- Monitored neutrino beam **with no one-to-one correlation** between **leptons** tagged in beamline and **neutrinos** in the far detector
- **Sub-ns sampling would offer this correlation (~100ps)**
	- On an event-by-event basis
	- Determine the flavor of neutrino

Possible use of PICOSEC Micromegas:

- 1. t_0 tagger and/or embedded in the EM calorimeter
- **2. Muon monitoring at the hadron dump**

F. Terranova, F. Acerbi, G. Ballerini, M. B onesini, A. Branca, C. Brizzolari https://doi.org/10.22323/1.390.0182*

Thank you for your attention!

backup

The Micromegas concept

A *two-region* parallel plate gaseous detector separated by a *micromesh* :

- Conversion region
	- Primary ionization
	- Charge drift towards A.R.
- Amplification region
	- Charge multiplication
	- Readout layout
		- Strips (1/2 D)
		- Pixels
- \rightarrow metallic micromesh (typical pitch \sim 50 µm)
- \rightarrow sustained by 50-150 µm pillars

Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, *"Micromegas: A high-granularity position sensitive gaseous detector for high particle-flux environments",* Nuc. Instrum. Meth. A 376 (1996) 29

 $C22$

W

The Micromegas concept

The virtue of the small gap

Parallel plate detector gain: $G = e^{\alpha d}$

Townsend coefficient
$$
\alpha
$$
: $a = \frac{p}{\lambda} e^{-\frac{I_e}{\lambda} \frac{pd}{V_a}}$

Gain variation:

$$
\frac{\delta G}{G} = G \left(1 - \frac{I_e}{\lambda} \frac{pd}{V_a} \right) \frac{\delta d}{d}
$$

The gain variation is reaching a minimum for : $d=$ V_a \overline{p} λ I_{e}

Optimum amplification gap: 30 – 100 μm

Stable gain – *less sensitive to flatness defects or temperature and pressure variation*

- ➔ **gain homogeneity over large areas**
- ➔ **good energy resolution**

 $C22$

Building a Micromegas

Micromesh

- Many different technologies have been developped for making meshes (Back-buymers, CERN, 3M-Purdue, Gantois, Twente…)
- Exist in many metals: nickel, copper, stainless steel, Al,… also gold, titanium, nanocristalline copper are possible.

Electroformed Chemically etched Wowen Si wafer (GridPix)

Laser etching, Plasma etching, Deposited by vaporization...

Pillars

cea

- Can be on the mesh (chemical etching) or on the anode (PCB with a photoimageable coverlay).
- Diameter 40 500 μm every few mm

+ Anode (readout)

Micro-mesh type → **Micromegas family**

- ➢ **"Conventional"**: a micromesh stretched on a frame is placed on a readout board with the help of spacers ("pillars")
- ➢ **Bulk Micromegas**: Process to encapsulate the mesh on a readout board
- ➢ **Resistive Anode**
- **Microbulk:** Photolithography & chemical etching of Kapton foils with Cu layers on both sides ("GEM technology").
- **Hybrid:** Micromesh placed on top of a silicon readout chip (i.e. InGrid, GridPix)
- Piggyback: A resistive bulk Micromegas on top of a dielectric. Decoupled readout
- ➢ **XY-Microbulk**: A Microbulk with segmented anode and mesh. Real XY-structure
- ➢ **Hybrid / double stage:** Micromegas with preamplification from at the drift space or by a GEM foil
- ➢ *Micro r-well (μRwell): a resistive Microbulk (DLC layer)*
- **Optical readout:** Micromegas build on a transparent anode and read by an optical camera
- **Thermal bonding:** Mesh stretched under high tension, supported by pillars formed with thermal bonding
- ➢ *PICOSEC Micromegas*

Micromegas for precise timing

Exploring Alternative Gas

GWP

The Global Warming Potential (GWP) is the ratio between the greenhouse effect of a substance over 100 years and that of CO₂. Therefore, if a compound has a GWP of \approx 740, the greenhouse effect produced by that compound is 740 times greater than that of CO₂.

Different concentrations of Ne and iC_4H_{10}

- Reached ~17ps with the 75/25 mixture and ~19ps with the 80/20 (~15ps with the standard mixture).
- Need to determine precisely the concentration inside the detector due to problems with the gas mixing system.
- Ne/iso mixture good candidates to achieve good time resolution with low GWP (order of 1).

Aimè, C., et al. "Simulation and R&D studies for the muon spectrometer at a 10 TeV Muon Collider." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2024): 169903. https://doi.org/10.1016/j.nima.2024.169903

2024/10/14

Expected number of p.e. per MIP

A MIP passing through a crystal will emit:

 $N_{p.e.} \approx 370L \int T(E)QE(E)\left(1-\frac{1}{n^2(E)}\right)dE$

For a MgF2 crystal and a CsI photocathode with typical bibliography values for *QE*(*E*), *T*(*E*) and *n*(*E*) as seen, we expect: **370 × 0.25 = 92 p.e./cm**

for a **3 mm MgF2** crystal we would expect **~28 p.e.**

Single photoelectron calibration runs have been taken using a cigarette *lighter's flame* for all detector settings. Analysis pending. For the time being matching the amplitude spectra with poisson distributions we estimate **~10 p.e. per MIP**

Margin for improvement!!

UV photon detection

Reflective photocathode:

Photosensitive material is deposited on the top surface of the micromesh.

Photoelectrons extracted by photons will follow the field lines to the amplification

region

- Smaller *ion backflow* → radiation hardness
- ✓ The photocathode does not "see" the avalanche ➔ *no photon feedback* ➔ higher gain in single stage (~ 10⁵)
- Higher electron extraction efficiency
- **x** Reflection on the crystal
- **x** e path variation
- Limitation to Microbulk / opaque meshes

Semi-transparent photocathode:

Photosensitive material is deposited on an aluminized $MgF₂$ window (drift electrode)

- Extra preamplification stage \rightarrow better long-term stability
- \checkmark higher total gain
- Various MM technologies & gas mixtures possible
- Decoupling of sensor photocathode
- × Lower photon extraction efficiency
- × Photocathode exposure to sparks
- \times Ion backflow \rightarrow radiation hardness (?)

Electron-peak distribution and Polya fit

- The integral of the electron peak is \bullet giving the induced charge
- Charge distribution is fitted by Polya \bullet function

$$
P(Q; c; \Theta; \bar{Q}) = \frac{c}{Q} \frac{(\Theta + 1)^{\Theta + 1} (Q/\bar{Q})^{\Theta}}{\Gamma(\Theta + 1)} e^{-(\Theta + 1)Q/\bar{Q}}
$$

- Fit is giving information of mean signal \bullet charge
- Needed for calculating the \bullet photocathode efficiency

Signal Processing for Precise Timing

- The Standard CDF Technique
	- Adjust a curve to the experimental data
		- Fitting the leading edge of the waveform with a logistic function

$$
f(x; p_0, p_1, p_2, p_3) = V(t) = p_3 + \frac{p_0}{1 + e^{-(x - p_1)p_2}}
$$

• Timing at 20% of peak amplitude for all signals (SAT – Signal Arrival Time)

W

Best Timing Performance per single cell

Time resolution - Single Gauss fit

Rise time (ns)

N W

- Time resolution improves and mean SAT moves at higher signal charge
- Binning is selected according to the Polya fit \bullet
- Total time resolution is calculated by the convolution of the individual time resolutions

 $C22$

- Time resolution is determined by the sigma of the SAT difference between the DUT and a t0 reference
- Correction of the slewing effect improves the fit of the distribution

$$
\sigma^{2} = \sum_{i=1}^{n} a_{i} \sigma_{i}^{2} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_{i} \times a_{j} \times (\sigma_{i}^{2} + \sigma_{j}^{2} + (\mu_{i} - \mu_{j})^{2})
$$

 $C22$

GaN can be an alternative photocathode material?

GaN:

- ➢ Higher quantum efficiency than CsI
- ➢ Broader bandwidth towards higher wavelengths \rightarrow Quartz instead of MgF₂ ?
- \triangleright Aging & Stability in the gas?
	- → *A GaN sputtering target already acquired!*

QE measurements for **opaque** GaN samples:

on sapphire (**black**/**green**), on an alumina substrate (**blue**) and on fused silica (**red**)

Could be ideal for a photodetector for cross-section measurements for water!!!

 $C22$

thomas.papaevangelou@cea.fr **2nd Italy & France FCC Workshop** 4-6 November 2024, Venice, Italy **45**

Detailed simulations

electron

Garfield++ and *electronics response*

All behaviors seen in single p.e. laser data are also seen in these detailed Garfield++ simulations.

Phenomenological model describing stochastically the dynamics of the signal formation

arXiv:1901.10779v1 [physics.ins-det]

 $C22$

thomas.papaevangelou@cea.fr example and the 2nd Italy & France FCC Workshop 4-6 November 2024, Venice, Italy

Results from beam tests (2017)

Same detector as for Laser tests:

- \triangleright MgF₂ radiator 3 mm thick,
- \geqslant 18 nm CsI on 5.5 nm Cr
- ➢ Bulk MicroMegas
- ➢ "COMPASS gas"

Optimum operation point: **Vdrift/Vanode: -475V/+275V**

W

Best result: **24 ± 0.3 ps**

 $N_{p.e.} = 10.1 \pm 0.7$

➢ *Result repeated in two different beam campaigns.*

J. Bortfeldt, et al., "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", Nucl. Instrum. Meth. A903 (2018) 317-325, doi:10.1016/j.nima.2018.04.033

Resistive technology tests

- Multi-Pad Prototypes (7-pad)
	- Hexagonal pads ø 1cm
	- MgF2 crystal
	- CsI & B4C photocathodes

Resistive layer Capacitive sharing μRwell

Timing e/m showers: from Simulation to Reality

Embed a PICOSEC-Micromegas layer inside a calorimeter after a few radiation lengths and/or inside the instrumented hadron damp

First Indications from laser test measurements @ IRAMIS /CEA-Saclay

First Simulation Studies with Geant4

For more info see the presentation by **A. Kallitsopoulou** *the RD51 Mini Week, CERN (7-10 Feb 2022)*

https://indico.cern.ch/event/1110129/contributions/4733737/attachments/2388605/40827 33/PICOSEC_in_electron_beam.pdf

cea

thomas.papaevangelou@cea.fr example and the 2nd Italy & France FCC Workshop 4-6 November 2024, Venice, Italy

Timing e/m showers: from Simulation to Reality

Embed a PICOSEC-Micromegas layer inside a calorimeter after a few radiation lengths and/or inside the instrumented hadron damp

First Indications from laser test measurements @ IRAMIS /CEA-Saclay

First Simulation Studies with Geant4

- Particle Beams @ CERN SPS H4 Beamline
	- Electrons 30GeV
	- \sim 1MH/cm2

- Multi-Pad Prototype (7-pad)
	- Resistive prototype
	- Hexagonal pads ø 1cm
	- MgF₂ crystal
	- B4C (12min) photocathode

cea

thomas.papaevangelou@cea.fr 2nd Italy & France FCC Workshop 4-6 November 2024, Venice, Italy

Detector response to electrons - 10MO/ & B4C photocathode

 $C22$

Detector response to showers by 30 GeV electrons

First Results on Detector response to high rate Pions

- Pions of 80GeV Energy
- Beam size 2.3x1.6cm
- Rate \sim MH/ $cm²$
- The Set Up
	- MCP-PMT for time reference and comparison with muon runs
	- Single pad $82MO/\square$ resistive 6nm B4C photocathode used as reference timing device
	- Detector Under Test
		- Single pad non resistive 1 cm 7nm B4C

➔ New test planned for 2024 in common with ENUBET using the large area resistive detectors (SPS or PS)

Picosec publications

PhD Thesis:

Sohl L., "*Development of PICOSEC-Micromegas for fast timing in high rate environments*", CEA Saclay 17/12/2020,<https://www.theses.fr/2020UPASP084>

Maniatis I. "*Research and Development of MicroMegas Detectors for New Physics Searches*", AUTh. Greece 25/02/2022, <http://ikee.lib.auth.gr/record/339482/files/GRI-2022-35238.pdf>

Master Thesis:

Paraschou K. " *Study of the PICOSEC Micromegas [Detector with Test Beam Data and Phenomenological Modeling of its Response](http://ikee.lib.auth.gr/record/297707/files/GRI-2018-21474.pdf)*", AUTh. Greece, 14/03/2018 GRI-2018-21474.pdf (auth.gr)

Kallitsopoulou A. "*[Development of a Simulation Model and Precise Timing Techniques for PICOSEC Micromeas](https://arxiv.org/abs/2112.14113) Detectors", AUTh. Greece, 15/10/2021,* [2112.14113] Development of a Simulation Model and Precise Timing Techniques for PICOSEC-Micromegas Detectors (arxiv.org)

Published papers:

- 1. J. Bortfeldt et al. (PICOSEC Collaboration), "*PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector*", Nucl. Instrum. Meth. A903 (2018) 317-325. <https://doi.org/10.1016/j.nima.2018.04.033>
- 2. J. Bortfelt et al. (PICOSEC Collaboration), "*Timing Performance of a Micro-Channel-Plate Photomultiplier Tube*", Nucl. Instrum. Meth. A960 (2020) 163592, <https://doi.org/10.1016/j.nima.2020.163592>
- 3. J. Bortfeldt et al. (PICOSEC collaboration), "*Modeling the Timing Characteristics of the PICOSEC Micromegas Detector*", Nucl. Instrum. Meth. A993 (2021) 165049, <https://doi.org/10.1016/j.nima.2021.165049>
- 4. S. Aune et al. (PICOSEC collaboration), "*Timing performance of a multi-pad PICOSEC-Micromegas detector prototype*", Nucl. Instrum. Meth. A993 (2021) 165076, <https://doi.org/10.1016/j.nima.2021.165076>

Selected Conference proceedings:

- 1. T. Papaevangelou et al., "*Fast Timing for High-Rate Environments with Micromegas*" , EPJ Web Conf. 174 (2018) 02002,<https://doi.org/10.1051/epjconf/201817402002>
- 2. F.J. Iguaz et al. (PICOSEC collaboration), "*Charged particle timing at sub-25 picosecond precision: The PICOSEC detection concept*", Proceeding of Pisa 2018 conference, accepted in Nucl. Inst. Meth. A, [https://doi.org/10.1016/j.nima.2018.08.070](https://webmail-e.cea.fr/owa/redir.aspx?C=XLrGaFFobzGS9joWfIf_QRGbgQjVzGB_dE3KrFxrHHD-n2mzVU_WCA..&URL=https://doi.org/10.1016/j.nima.2018.08.070)
- 3. L. sohl et al. (PICOSEC collaboration), "*Progress of the Picosec Micromegas concept towards a robust particle detector with segmented readout*", 9th international symposium on Large TPCs for low-energy rare event detection, 2018,<https://doi.org/10.1088/1742-6596/1312/1/012012>
- 4. L. Sohl et al. (PICOSEC collaboration), "*Single photoelectron time resolution studies of the PICOSEC-Micromegas detector*", JINST 15 (2020) 04, C04053, Contribution to: IPRD1, <https://doi.org/10.1088/1748-0221/15/04/C04053>
- 5. J Manthos et al. (PICOSEC Collaboration), "*Recent Developments on Precise Timing with the PICOSEC Micromegas Detector*", J.Phys.Conf.Ser. 1498 (2020) 1, 012014, <https://doi.org/10.1088/1742-6596/1498/1/012014>

What is needed for a new generation cross-section facility?

- Measure the neutrino flux of a xsect-dedicated short baseline beam with a precision <1% in v_e and v_{μ} . Flux is the dominant systematics. Generally known at 10% level with a few notable exceptions
	- Combine hadroproduction data + v-e scattering (5-10%). World record: L. Zazueta [Minerva Coll.] PRD 107 ۰ (2022) 012001 (3.3-4.7% for v_u)
	- Monitored neutrino beam (this seminar) 0.5-1 %
	- Muon storage ring (nuSTORM) <1% \bullet
- Measure the energy of the neutrino without relying on the final state to get rid of all biases coming from nuclear reinteractions
	- Narrow band beams combined with movable detectors (rough approximation of a "monocromatic beam") \bullet
	- Monitored neutrino beam "Narrow band- off-axis technique" (this seminar) ٠
	- Tagged neutrino beams (ENUBET+NuTAG Physics Beyond Collider) \bullet
- Use the same **target** as DUNE and HyperK + low Z target (existing or new experiments)
	- Some information available from near detectors (but, then, issues with flux × cross-section deconvolution) ٠
	- New experiments with existing or novel detectors along a short-baseline beam (following the success of \bullet dedicated experiments like Minerva) *[ENUBET: the first monitored](https://indico.cern.ch/event/1353517/attachments/2772398/4831052/terranova_cern_enubet_15dec2023.pdf)*

neutrino beamF. Terranova https://indico.cern.ch/event/1353517/at [tachments/2772398/4831052/terranov](https://indico.cern.ch/event/1353517/attachments/2772398/4831052/terranova_cern_enubet_15dec2023.pdf) a_cern_enubet_15dec2023.pdf