

LGAD detectors for tracking and timing

Enrico Robutti (INFN Genova), Roberta Arcidiacono (UPO & INFN Torino)

The IDEA silicon wrapper

In the IDEA concept, the drift chamber is complemented by an external tracking layer to: DCH Rout = 200 cm - improve p_T resolution; DCH Rin = 35 cm - provide absolute reference for tracks polar angles; Cal Rin = 250 cm - extend tracking coverage at large |*η*|; - possibly provide timestamp to associated Cal Rout = 450 cm tracks in the vertex detector \Rightarrow relax power requirements

05/11/2024 2nd FCC Italy & France Workshop

~90 m2 of silicon detectors (one layer)

- position resolution: up to now 7 μm in *r*φ, 15 μm in *z* considered: still the reference?
- very low rate, O(1 kHz/cm2), low integrated dose expected

Silicon technology for the silicon wrapper

Baseline technology is DMAPS: synergy with vertex sensors

-
- Total surface for silicon wrapper about 20 times that of vertex detector (or CMS "Phase-2"

tracker)

- With similar pitch \Rightarrow O(10¹¹) channels

Are suitable alternative technologies available for consideration?

-
- Resistive Silicon Detectors (RSD) can provide high-resolution position measurement with

relatively large pitch

- Suitable for low occupancy environments
- Thin silicon layer(s) \Rightarrow comparable material thickness
- Precision time measurement possible
- Ongoing R&D on implementation in DMAPS structures

Time measurement in the silicon wrapper?

PID in IDEA (*π*-*K, K-p* separation) provided by the d*E*/d*x* or d*N*/d*x* (cluster counting) measurements in the drift chamber

- Few tens of ps resolution would "fill" the region around 1 GeV/*c* not covered by d*N*/d*x* for *K*-*π* separation
- Possible improvement of sensitivity in flavour physics studies; new handle for "exotic" signatures
- Note: with a 3 T magnetic field, 1-GeV particles in central region ($\theta \sim 90^\circ$) would barely reach the wrapper

Addition of a time measurements in the silicon wrapper (~2 m from the IP) would complement PID with a TOF system

4

TOF integration in simulation

Studies ongoing on benchmark channel $B_s \rightarrow D_s K$

- In general, as expected, inclusion of TOF nicely extends *π*-*K* separation
- In this channel, *K* and *π* spectra are hard, well into the d*N*/ dx discrimination region \Rightarrow TOF contribution is marginal
- But little doubt additional timing handle can be used if available in channels with softer spectra, LLP searches,…

A. Coccaro, F. Parodi, E. Perez

Which technology for the silicon wrapper?

AC-coupled LGAD sensor (aka **R**esistive **S**ilicon **D**etector)

INFN has historically a leading role in the development of LGAD detectors

- A potential candidate technology for the space-time detector for IDEA is the resistive
	-
- **Dominant contribution in design, test, simulation studies from Torino, Perugia groups, in**
- More recently, additional foundries such as **HPK, BNL, IHEP, and CNM** have joined this line of

collaboration with FBK

First AC-coupled LGADs prototyped by FBK in 2019

research, prototyping AC-LGADs.

RSD main characteristics:

- **excellent position resolution with reduced number of channels** *σxy =* **3-5%** *a***;** - **timing resolution and radiation hardness similar to "standard" LGADs;**
-
- **suitable for low-density hit environment**

AC-LGAD, or Resistive Silicon Detectors

concept to gas detectors such as RPCs

Direct charge induction on the resistive layer, **large > 5 fC (gain 10-30) & fast (~1 ns) signal** Signals are induced on the AC-coupled metal pads: the shape and segmentation of the read-out pads defines the spatial resolution

LGAD with AC coupled read-out: a resistive layer is needed for charge collection \Rightarrow similar

start intrinsic signal sharing

Internal charge multiplication

- \circ Single, uninterrupted diode \Rightarrow device with 100% Fill Factor
- Metal read-out pads coupled to the sensor through an oxide layer
- Resistive n+ layer
- Continuous gain layer spreading across the active area

AC-LGAD, or Resistive Silicon Detectors

05/11/2024 2nd FCC Italy & France Workshop

LGAD with AC coupled read-out: a resistive layer is needed for charge collection \Rightarrow similar concept to gas detectors such as RPCs

2nd 05/11/2024 FCC Italy & France Workshop

AC-LGADs from FBK: RSDs

FBK RSD2 (2021) best design: swiss cross electrodes. Position performance have been explored with laser and several test beams.

R. Arcidiacono et al, "High precision 4D tracking with large pixels using thin resistive silicon detectors", NIM A 1057 (2023[\) https://doi.org/10.1016/j.nima.2](https://doi.org/10.1016/j.nima.2023.168671)

Space resolution depends on several factors: electrodes pitch and geometry; electronics noise; signal digitisation; reconstruction algorithm.

x-y coordinates reconstructed using the "charge asymmetry" method + correction (migration matrix or sharing template, to correct algorithm induced distortion effect)

Space resolution with RSDs

FBK RSD2 (2021) best design: swiss cross electrodes. Position performance have been explored with laser and several test beams.

10

Results using TCT setup (laser)

RSDs at gain = 30 achieve a spatial resolution of about 3% of the pitch size

- 1300 x 1300 mm²: $s_x \approx 40 \mu m$
- 450 x 450 mm²: $s_x \approx 15 \mu m$ ٠

2nd 05/11/2024 FCC Italy & France Workshop

Space resolution with RSDs

FBK RSD2 (2021) best design: swiss cross electrodes. Position performance have been explored with laser and several test beams.

RSD2-450, pixel 450 x 450 μ m² 16 electrodes 16ch FAST2 Board (INFN Torino) + CAEN Digitizer

11

Results with electron testbeam (DESY)

The constant term dominates the resolution $\sigma_{\text{constant}} \sim 13 \,\mu\text{m}$ It includes mis-alignment RSD-Tracker, sensor and electronics non uniformity, etc…

Resolution around **3%-4% of the pitch.**

L. Menzio et al, "First test beam measurement of the 4D resolution of an RSD 450 microns pitch pixel matrix connected to a FAST2 ASIC",)NIMA 1065 (2024), 169526

Next evolution (R&D) at FBK: DC-RSD

RSD sensors show some non-ideal features:

- Signal spread may involve a large (>4) and variable number of electrodes, leading to slight deterioration and a spatial resolution which is positiondependent
- Baseline fluctuations (leakage current collection only at the edge)
- The bipolar nature of the signals, with rather long tails during the discharge

Next evolution (R&D) at FBK: DC-RSD

RSD sensors show some non-ideal features:

- Signal spread may involve a large (>4) and variable number of electrodes, leading to slight deterioration and a spatial resolution which is positiondependent
-
- Baseline fluctuations (leakage current collection only at the edge) • The bipolar nature of the signals, with rather long tails during the discharge

2nd 05/11/2024 FCC Italy & France Workshop **Extensive simulation studies performed to optimise design**: resistive path, charge sharing, electrodes geometry, confinement method…

 $1\cup$

-
-

DC collection of signals, with low resistivity paths to readout pads ⟹ **DC-RSD design**

- Signal is confined: charge sharing in a predetermined number of pads • the leakage currents is removed locally at each electrodes
-
- No bipolar signal \rightarrow 1 ns-long pulses

→ uniform performance and scalable to large devices

Status of DC-RSD production

DC-RSD development started in the framework of the **4DinSiDe** (PRIN, 2017) and is now continuing with the **4DSHARE project** (INFN CSN5, PRIN 2022)

The first proof-of-concept production at FBK is close to completion (Nov/24)

3D-TCAD simulation comparing

DC-RSD without (left) and with (right) isolating trenches

F. Moscatelli et al, https://www.sciencedirect.com/science/article/pii/S0168900224003061 (2024)

• The solution selected to achieve the containment: use of Isolating Trenches (like in TI-LGADs or SiPM)

05/11/2024 2nd FCC Italy & France Workshop

Status of DC-RSD production

DC-RSD development started in the framework of the **4DinSiDe** (PRIN, 2017) and is now continuing with the **4DSHARE project** (INFN CSN5, PRIN 2022)

The first proof-of-concept production at FBK is close to completion (Nov/24)

-
- Several test structures implemented:
	- devices with squared or hexagonal matrix of electrodes (dot-like), without and with isolating trenches, multiple pitch options
	- strips with multiple pitch options, and different electrode layout

• The solution selected to achieve the containment: use of Isolating Trenches (like in TI-LGADs or SiPM)

AC-LGADs from HPK

- Target application: EIC
- Here showing the "charge-sharing approach" type (as in FBK RSD small metal pad size), for low occupancy colliders.
- **Strips** 1 cm length, **500 μm pitch, 50 μm metal width**, 50 μm active thickness

- Similarly good results obtained with a 20-μm active thickness (very thin!!!) **pixel matrix 500-μm pitch , 150 μm electrode pads:**
- quite uniform performance
- **σSpatial ~ 21 μm**
- **σTime ~21 ps**

https://lss.fnal.gov/archive/2024/slides/fermilab-slides-24-0039.pdf

AC-LGADs from BNL

- Target application: EIC
- Results from a FNAL test beam ([link](https://arxiv.org/pdf/2201.07772.pdf)) on **BNL production**

- \bullet $\sigma_{\text{Spatial}} = 5 \text{-} 10$ um along x-axis
- \bullet $\sigma_{Time} = 30-40 \text{ ps}$
- Only 30% of the active area (central part) used used for the reconstruction
-

BNL sensor(2020): 100 um pitch strips (80 um metal)

● New BNL prototypes (May 2023) under studies (optimized strips and pixel matrix with cross-like electrodes)

05/11/2024 2nd FCC Italy & France Workshop

AC-LGADs from IHEP

IHEP strip: variable pitch

- Target application: EIC
- AC-LGAD strips, 150 200 and 250 um pitch (5.7 mm long)
- Studied with pico-second laser test and beta source test

- Timing resolution 37.6 ps
-

May 2024 https://arxiv.org/pdf/2307.03894

 \circ Spatial resolutions pitch sizes of 150 µm, 200 µm, and 250 µm are 8.3 µm, 10.9 µm, 12.8 µm, respectively.

A new paradigm for silicon trackers

- **Binary read-out:** $\sigma_{pixel} \sim 0.3$ *·***pitch**
- **AC-LGADs: σ ~ 0.03- 0.05** *·***pitch**
- **AC-LGADs** time resolution → **30-40 ps**

similar space resolution with reduced number of read-out channels (a factor of ~100 less)

excellent time resolution

05/11/2024 2nd FCC Italy & France Workshop

Conclusions

- Resistive read-out coupled to LGAD technology can enable accurate 4D-tracking
	- Large & fast signals shared among a constant number of pads, 100% fill factor
- State-of-the-art AC-coupled resistive LGADs studied with testbeam particles: \circ achieved 15 um spatial resolution and 50 ps time resolution with 450 microns pitch \circ achieved 15-20 um spatial resolution with 500 microns pitch strips
	-
	-
	- \rightarrow ideal for low-occupancy applications
- Many prototypes on the market ○ FBK, HPK, BNL and IHEP
- scale devices.

Possible improvement with the DC-coupled resistive LGAD (DC-RSD), soon to be tested, enabling larger

