

R&D ACTIVITIES : HTS QUADRUPOLE AND BEAMPIPE

FCC

2nd FCC Italy & France Workshop

<u>Matthieu Marchand,</u> Laurent Brunetti, Gaël Balik, J.P. Baud, Isabelle De Bonis, Agnès Dominjon, Giovanni Lamanna, Freddy Poirier | LAPP – IN2P3 M.Koratzinos, A. Thabuis | PSI

05.11.2024

HTS MAGNET IN FCC – Definition

- FCC project must face technologic, economic and ecologic challenges => HTS magnet can be part of the solution
 - A High Temperature Superconducting (HTS) magnet => operate at temperature above 30°K, versus 2°K for classic superconducting magnet (NbTi) => sustainable and economical solution since much less energy is needed to cool down the magnets

=> M. Koratzinos, "The FCCee-HTS4 project", FCC week 2024, San Francisco

A Canted Cosine Theta (CCT) magnet => a magnet design using two opposed solenoid fields. The HTS material (ribbon) is coiled inside a single and canted groove => reduce the mechanical stress on the conductor + gain of space since it's a very compact design

=> S. Caspi and all "Canted–Cosine–Theta Magnet (CCT)— A Concept for High Field Accelerator Magnets", IEEE Transactions on Applied Superconductivity · June 2014

• HTS technology is a promising and relevant technology for FCC

REBCO ribbon

HTS MAGNET IN FCC – Status and Objectives

- HTS project for FFC (HTS4) started in 2022
 - ➢ In August 2023 => successful cold test of a CCT NbTi quadrupole at PSI ⇒ M.Koratzinos, "New design of FF quads using HTS" in Frascati 2023
 - In June 2024 => a successful manufacturing and winding of HTS CCT sextupole at CERN. It will be followed by the cold test in 2025.
 => M.Koratzinos, "The FCCee-HTS4 project", FCC week 2024, San Francisco

Magnetic simulation / HTS shape – M.Koratzinos

- Approach of the HTS CCT quadrupole manufacturing (LAPP):
 - Quadrupole part is built according to the coil using magnetic field simulation (M.Koratzinos) => compromise between magnetic and mechanical specifications.
 - Main objectives : Mechanical design, manufacturing process and prototyping of the HTS quadrupole with local manufacturers.
 - In parallel => development of the beam pipe compatible with the quadrupole design.

HTS MAGNET IN FCC – Quadrupole Design (1/2)

- A part with a specific geometry
 - To ensure the correct magnetic field is generated => two square aluminium alloy part. The beam pipe passes trough the inner body (yellow), nested in the outer body (blue).
 - A final part 700mm long and a 400mm long prototype => the design/prototyping process must be adapted to the final dimensions.
 - A single narrow and canted groove is winded along each magnet, with specifications hard to meet => 4 to 8 mm deep, 1mm width and canted up to +/-60° with very high tolerances (+0,01mm).

	Quadrupole specifications		
	Main characteristics		
า	Two bodies in => the inner body nested in the outer body		
e	Aluminium alloy => to be determine according the best machining process		
	Square shape + rounded edges to facilitate the assembling of both bodies		
e	General dimensions		
	700mm long (400mm for the prototype) => two 350mm sections (200mm sections)		
า _	Inner part => 40mm diameter for the 36mm diameter beam pipe crossing		
	Inner body maximal diameter => 65mm Outer body maximal diameter => 64mm		
	A 0,3mm space between the two bodies => no contact		
	The groove		
	4mm (plane surfaces) to 8 mm deep (rounded surfaces)		
	1mm width with a +0,01mm tolerance		
	A 1,8mm space between each pass		
	0 to +/- 60° inclination relative to the magnet axis		
	A surface finish precise enough to not damage the tape => to be determined		

HTS MAGNET IN FCC – Quadrupole Design (2/2)

- Feedback from the manufacturers following the feasibility study:
 - Very complex geometry with high precision => magnet is too long to keep the tolerances with current machine technology.
 - Choose between dimensions and precisions => adaptation of the design.
- Bodies constituted of two sections assembled together:
 - > Each body is separated in two complementary sections.
 - The bodies are cut along the groove trajectory => clean cut and facilitate the assembling.
 - Two opposed and complementary sections aligned and indexed by a pins and hole system.

Assembling and fixation made by an external cage (like for the sextupole) => compression of each elements to stop their movements.

Conclusion: a very complex part with high tolerances => find the right manufacturing process and manufacturers.

HTS MAGNET IN FCC - Manufacturing

- The manufacturing process
 - Electro-erosion wiring cutting => for the particular shape of the intern and extern surfaces.
 - Continue multi-axes machining => enables to realise the groove tilt and the section cut geometry.
- Vibrations analysis dedicated to the machining process.
- Identification of a local industrial network with a strong expertise to manufacture the 40 FCC final focus quadrupoles (and the hundreds of sextupoles).
- An evolving design => several evolutions to meet the manufacturing limits and physical specifications => find the best compromises
 - A smaller HTS ribbon => 3mm deep groove.
 - A groove stretching around the section cut area => make easier the indexation and fewer the machine errors.
 - > Tolerances reduced to match the machine's precision.

First flexion mode at several hundred Hz

Observation : there is a high risk of manufacturing iteration due to the specifications => need to reduce this risk and the prototyping cost

HTS MAGNET IN FCC – Pre-prototyping at LAPP

- Pre-prototyping one section of the outer body magnet at a reduced scale => collaboration local university mechanical department (USMB) and LAPP.
- Using the local resources to machine the key elements of the part => manufacturing a 100mm section of the magnet
 - strong mechanical expertise
 - ➤ 5 axis machine for the 3-5 groove turns and the section's cut
 - Wire cutting machine for the external surfaces
- Identify the "hard spots" and potential difficulties of the machining process => adapt the design and determine an efficient manufacturing process before launching a production at a real scale.

Pre-prototyping : Quadrupole section

Quadrupole section made by wire cutting at USMB

- Manufacturing other sections of the magnet with metrology, vibration analysis, alignment and assembling tests => validation for the real scale prototyping with an industrial partner.
- Objective : Increase number of low-cost trials to solve manufacturing problems => reduce the iteration risks for the industrial prototyping => "one shot".

BEAM PIPE– Definition

- The cryostat beam pipe needs to be compatible with the HTS quadrupole design => development of a beam pipe to respect the local constraints :
 - Heat dissipation due to the beam radiation => need of a cooling system for the beam pipe.
 - A very compact magnet with a 40mm inside diameter and a fixed internal beam pipe diameter of 30mm => a 5mm gap to ensure the beam pipe cooling and the thermic isolation from the cryogeny => integrated cooling system to the beam pipe.
 - Very little space between the LumiCal and the anti-solenoid, next to the QC1L1 => not enough space to have an access for calorific fluid => fluid access (inlet+outlet) need to be in the same extremity of the pipe, next to QC1L3.
 - They share the same environment => complementary integration issues.
 - HTS magnet and beam pipe => same industrial local network.

Conclusion : Due to the geometry of the HTS quadrupole and the physical specifications, a specific beam pipe, compatible with the magnet design, has to be developed.

Cutting view of the magnet and pipe assembly

BEAM PIPE- Design (1/2)

- A beam pipe with a singular integrated cooling system (M.Koratzinos concept):
 - A custom flange outside the cryostat, near to QC1L3, with inlet and outlet for the two-way water flow.
 - A tube with an internal structure in helix between two walls => a cooling flow all around the tube, back and forth, cooling it down.

=> M.Koratzinos, "FCC ee interaction region Concepts" 2022 FCC Week, London

➤ A second custom flange inside the cryostat close to the IP (without access to external pipes) => an inside channel enabling the fluid to change directions and come back towards the first flange (outlet).

BEAM PIPE– Design (2/2)

• A singular pipe with strong specifications

Flange CAD with the fluid inlet/outlet

Conclusion : Due to the singular geometry, dimensions and specific water flow, this system needs a strong fluid, thermic and mechanical analysis to study its feasibility.

Beam pipe specifications

Main characteristics

Two flanges with inside water channels + a double wall pipe with a intern double spiral structure

Stainless steel => Strong rigidity and non corrosive

Fluid => water

Airtight and leakproof (water flow inside the pipe walls + ultra vacuum inside the pipe + primary vacuum outside the pipe)

General dimensions

3 meters long (~cryostat length)

30mm intern diameter 36mm outside diameter 1mm thick wall

1mm thick space for the water flow

Surface finish sufficient to not disrupt the internal water flow => to be determine

The Flanges

90mm diameter

16,7mm thick

2 1/8" holes for water inlet and outlet for the hydraulics connectors

6*7mm diameter holes to connect the flanges to other beam pipe sections

BEAM PIPE- Fluid, thermic and mechanical analysis

- Several types of numerical simulation => validation of the beam pipe concept + design optimization
 - Static analysis to study its mechanical performance.
 - Modal analysis to study vibrations.
 - Fluid analysis to study the evolution of temperature, pressure, velocity and turbulences along the pipe.
- Simulations in progress (temperature, turbulences) => some leads of improvement are identified (smoother shapes in tube/flange, multichannels, ...).

Boundary conditions	Resolutions	
Mechanical analysis		
Fixed at its two flanges	Max displacement : 0,6mm	
Intern hydrostatic pressure for water flow	Max stress : 5,5 MPa	
Inside ultra vacuum (1 ^e -10Pa) and outside primary vacuum (1 ^e -4Pa)	First mode : 23Hz	
Fluidic analysis		
Velocity inlet : 1 m/s	Inlet pressure : to be determine	
Temperature inlet : 20°C	pipe temp : to be determine	
Surface heat transfer (100W/m) : 1037 W/2	Water velocity : to be determine	
	Turbulences : to be determine	

Need of more precise specifications, especially for turbulences, to adapt the design.

Conclusion : need to prototype the pipe to test it and compare the simulation => well-defined manufacturing process.

BEAM PIPE– Manufacturing and pre-prototyping at LAPP

- The manufacturing process
 - A pipe separated in several sections => a pipe segment, two custom made flanges with a small pipe segment incorporated and a junction part.
 - Each section made by 3D metal printing => some machines can combine 3D printing with machining for a better surface finish (inside the cooling channel).
 - Sections assembled by welding => TIG, electron beam or laser welding : process to be determined according the metal properties and the precisions needed.
 - The quadrupoles mounted before the second flange welding, due to the diameter interference.
 - > Dis-assembly has to be studied.
- Just as for the HTS quadrupole:
 - Building a solid local industrial network => combine efforts to find same partners for both parts.
 - Pre-prototyping each of the 4 beam pipe sections => collaboration LAPP USMB
 - Identify the potential difficulties we could face during an industrial manufacturing and adapt the design if necessary => establish a precise 3D printing strategy.
 - Use this first sections to start assembling (welding), water, thermic, vibration and metrology tests => validation of the process and pipe concept.

Summary and Outlook

- There are major technological and economical benefits for FCC by using HTS magnets. It's a technology which has a bright future and the FCC project has the opportunity to be one of the major actors in its development.
- After the manufacturing of a HTS sextupole and waiting for its cold test, an HTS quadrupole is under study.
- The singular magnet design and its environmental constraints make that we need to develop a specific cryostat beam pipe compatible with the quadrupole.
- The first steps of both parts manufacturing has started with their pre-prototyping => validate their concept and anticipate a
 prototyping at a larger scale.
- The short term actions:
 - Improve the magnet design and manufacturing process through the pre-prototyping project => groove and section design and manufacturing tolerances and strategy.
 - Improve the pipe design and manufacturing process through the pre-prototyping project => adapt the design for turbulences + more precise simulations + start to study in detail the welding process for the pipe.
 - Prepare the manufacturing of the final prototypes (manufacturers are already identified).
- The mid term actions:
 - Manufacture the magnet and the pipe prototypes with all the instrumental tests (metrology, vibrations analysis, magnet cold tests, beam pipe cooling tests...).

Thank you for your attention!

○ FCC