

5th November 2024 | Venice, Italy

Simone Busatto Samuele Mariotto Lucio Rossi FCC-ee conceptual layout of a HTS superferric combined function quadrupole and sextupole magnet

FCC-ee Lattice:

CDR: 2900 quads & 4700 sextupoles

Normal conducting, ~50 MW @ ttbar 3 different types of short straight sections

	Mag. Length	Bore aperture (reduced)	Vacuum aperture (reduced)	Pole tip field	Number of units (arcs)	Total magnetic length	Ring filling factor (91 km)
	[m]	[mm]	[mm]	[T]		[km]	[%]
Dipole (S)	19.30				1128	21.77	
Dipole (M)	20.95	37	30	0.061	284	5.95	
Dipole (L)	22.65				1428	32.35	
Total					2840	60.1	65.9
Quadrupole	2.9	37	30	0.438	2836	8.2	9.0
Sextupole	1.5	33	30	0.442	4672	7.0	7.7

Arc magnet specifications from optics – May 2023 (K. Oide)

Resistive Sextupole and Quadrupole Design:

10 T d	design	(CDR)
--------	--------	-------

0

	Element	Magnetic	component	Baseline Fields		
		Dipole	Quad	Dipole [T]	Quad [T/m]	
tĪ	Mian Dipoles	B1		0.0612		
	Quad F	Bf	QF		11.860	
	Quad D	B1	QD		-11.860	

Via EPFL (Leon Van Riesen-Haupt, Cristobal Garcia) through PSI

Sextupole

Magnets for FCC-ee, J. Bauche et al.

Parameter	Unit	Value	
Sextupole strength	T/m2	880	
Current	А	4250	
Number of turns per coil	-	14	
Operation current	А	304	
Conductor dimensions	mm ²	8.5×8.5	
Cooling diameter	mm	4	
Current density	A/mm ²	5.1	
Voltage drop per magnet	V	23.4	
Resistance per magnet	mΩ	78	
Power per magnet	kW	7.2	
Number of water circuits	-	6	
Water temperature rise	°C	13.2	
Cooling water speed	m/s	1.8	
Pressure drop	bar	6	
Reynolds no.	-	3530	

WHY HTS Magnet?

WHY Superferric Magnet?

Superconducting Magnet

- Increase Dipole Filling Factor, lower energy dispersion hence reducing the RF power consumption, can lead to an increased beam intensity
- Optics Flexibility

Higher Operating temperatures (20-50 K)

- Reduction of power consumption wtr LTS
- No need of LHe (cost reduction)

Parallel Synergies

- Detector Magnets
- Nuclear Fusion
- Medical Facilities

Iron Dominated Magnet

- Well Know design, like a resistive magnet
- Better control on the field quality
- No need of complicated geometries for the coils, HTS materials are fragile.
- Small amount of HTS (lower material costs)

Combined Magnet

- Low number of power supplier
- Reduce total number of magnets

MAIN GOAL of the proposal: Combined Sextupole and Quadrupole Superferric HTS magnet

From Andrzej Wolski, CAS

Requirements:

- Independent Quadrupole and Sextupole, have to work only as either • a quadrupole or sextupole
- Minimum number of power supplier to lower energy consumption
- High field quality in the bore @Rref = 10mm •
- Bore Dimension : 35 mm •
- Quadrupole can not be shorter due to quadrupole synchrotron • radiation (Open Challenge)

Solution:

- Dodecapole iron structure
- Two Independent power supplier

Property	CDR	LASA - HTS
Magnetic Length	2.9 + 1.5	2.9
Max Quad Gradient [T/m]	11.86	11.86
Max Sextupole Strength [T/m^2]	880	455
Integrated Sextupole Field [T m]	0.132	0.13195

Quadrupole configuration

Coil Configuration

- Use 2 different power supply, one for group 1 and one for group 2.
- Be able to obtain, only quadrupole, only sextupole or both, depending on the current given by the two generators.

Parameter	Value
Radius of the bore (r0) [mm]	35
Radius of cut for the iron pole (rc) [mm]	41
N° of 4 mm tapes per coil	20
Tape bending radius [mm]	9
Total tape length per coil [m]	117

Single Mode

Quadrupole Configuration

Peak Field on the tape: 1.84 T Current in each tape: 257 A

Sextupole Configuration

Peak Field on the tape: 0.91 T Current in each tape: 116 A

Combined Mode

Loadline using Faraday Factory Japan tape

Peak Field on the tape: 2.02 T Current in each tape: 476 A Inductance: 0.216 mH

Field Quality of the magnet

Mode	Target Value	NI group 1	NI group 2	Dipole Field [T]	G [T/m]	S [T/m^2]	b4 [units]	b5 [units]	b6 [units]	a2 [units]
Quadrupole	11.8 T/m	5140	5140	-1.96E-05	-11.86	0.9488	-1.6359	2.2698	46.2834	-6.4341
Sextupole	455 T/m^2	2320	-2320	4.96E-07	-4.29E-05	-455.15	-1.8481	-3.4769	2.8898	-1.4357
Combined	11.8 T/m 455 T/m^2	9513	2441	-0.024	-11.86	-455.07	44.22	-16.35	32.48	5.95

Open Points and Next Steps

Field Quality and Magnet optimization

- Possibile use of the combined magnet also as a dipole
- Is the quality maintained for each combination of quadrupole and sextupole?
- Possible coupling between the two beam lines

Open Points

Next Steps

Coil Construction

- Is it possible to have such a narrow coil?
- Insulated or Non insulated
- Junction and winding

Energy Losses and Cryogenics

- Quench Analysis
- Cryocooling, Liquid N line?
- Cooling methods and thermal isolation, Iron mass is cold?

Mechanical structure and Assembly

- Supports, position of the walls and how to assemble it
- Lorentz forces analysis ad effect on the HTS material

