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Outlook

As presented in talks by A. Sytov and G. Paterno,
crystal-based positron sources offer promising
potential for future colliders.

Here, we will see the test beam results on crystal
radiators, which serve as a crucial benchmark for
simulation code validation.

oriented crystal amorpnous
photon radiator target-converter
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simulation code validation.
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Crystal radiators

Material: Tungsten (W) Material: Tungsten (W) Material: [ridium (Ir)

channelling Axis: <100> channelling Axis: <111> (most efficient) channelling Axis: <110> (most efficient)
0., = 0.5 mrad O, = 0.6 mrad O, = 0.6

Thickness: 2.25 mm (0.64 X0) Thickness: 1.5-2 mm (0.43 - 0.57 X0) Thickness: 1-2 mm (0.34 - 0.68 X0)
(research center manufactured crystal) (industrially manufactured crystals) (industrially manufactured crystals)
Tested at DESY T21 beamline with 5.6 GeV/c Tested at CERN PS T9 beamline with 6 GeV/c

CE/RW

. electrons electrons
u
2/20

A
05/11/2024 2" FCC France & Italy workshop Nicola Canale




Crystal radiators
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Crystal radiators
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Crystal radiators

Material: Tungsten (W) Material: Tungsten (W) Material: [ridium (Ir)

channelling Axis: <100> channelling Axis: <111> (most efficient) channelling Axis: <110> (most efficient)
0., = 0.5 mrad O, = 0.6 mrad O, = 0.6

Thickness: 2.25 mm (0.64 X0) Thickness: 1.5-2 mm (0.43 - 0.57 X0) Thickness: 1-2 mm (0.34 - 0.68 X0)
(research center manufactured crystal) (industrially manufactured crystals) (industrially manufactured crystals)

W 2mm baseline for Hybrid source

Research Center quality crystal radiator - 1.5mm for optimization Higher potential, interesting alternative
studies

Tested at DESY T21 beamline with 5.6 GeV/c Tested at CERN PS T9 beamline with 6 GeV/c

. electrons electrons ﬁ
CERN
L—-/J
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T h e S e1: U p DESY setup configuration

Electron beams at

Si microstrip layers Si microstrip layers copper + plastic scintillators (APC)
input tracker output tracker Photon multiplicity counter
crystal
on goniometer

Electromagnetic
calorimeter

bending
magnet

Provided by INFN Milano Bicocca team - Erik Vallazza & Michela Prest
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T h e S e1: U p @ CERN setup configuration

Electron beams at

Si microstrip layers copper + plastic scintillators (APC)
input tracker Photon multiplicity counter
crystal
on goniometer

Electromagnetic
calorimeter

bending
magnet

Provided by INFN Milano Bicocca team - Erik Vallazza & Michela Prest
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CERN DESY
configuration configuration

The setup

Si microstrip layers
input tracker

Input stage
Reconstruct track and
impinging angle on the

crystal
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CERN DESY
configuration configuration

The setup

Si microstrip layers
input tracker

Crystal reconstruced position Impinging angles
Input stage T
Reconstruct track and o on mose- | m
. .. : oy efficient g g
impinging angle on the s .
crystal

© area

-4000 —2000 0 2000 4000 -4000 —2000 0 2000 4000
0 [urad] 8 [urad]
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The setup - input stage

Input tracker
~ 2X2 cm? xy double-sided Si microstrip sensors, Simicrostrp ayers
with an overall ~10 pm single-hit resolution. \

~ 9.5%9.5 em? xy double-sided Si microstrip sensors,
with an overall ~40 pm single-hit resolution.

Goniometer from LNL & UNIPD

Fine-grained, remote-controlled movements along
X,y, 6, and 8, with ~5 pm, Tprad resolution.
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CERN DESY
configuration configuration

The setup - the crystal

crystal
on goniometer

Material: Tungsten (2.25 mm) Material: Tungsten (1.5-2 mm) Material: (1-2 mm)
channelling Axis: <100> channelling Axis: <111> channelling Axis:
Axial potential: 1 keV Axial potential: 1 keV Axial potential: 1 keV

O, = 0.5 mrad
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0. = 0.6 mrad 0. = 0.6 mrad
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DESY setup configuration

The setup - output tracker

Si microstrip layers
output tracker

output tracker
As multilpicity counter to align the
crystal
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The setup - magnet

CERN DESY
configuration configuration

bending
magnet

Magnet

Select only the photons
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The setup - output stage

CERN DESY
configuration configuration

copper + plastic scintillators (APC)
Photon multiplicity counter

\\..

APC + Cu converter
Photon mutiplicity counter
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CERN DESY
configuration configuration

The setup - output stage

Electromagnetic
calorimeter
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The setup - output stage

An Active Photon Converter (APC) based on
plastic scintillators and thin layers of copper
(0.2X,) for photo conversion

consists in 4
e 3X3 matrix of BGO blocks, PMT-based readout

Pb glass
calorimeter

« (OPAL) Lead glass blocks read out by PMTs

AT )
1 l : Active Photon
- Converter (APC) -
> calorimeter
Jr’wh Yy, & J

05/11/2024 2" FCC France & Italy workshop Nicola Canale 12/20



RESULTS A



DESY T21 line

Electron beams at 5.6 GeV/c

W of 2.25 mm (0.64 X0) aligned along <100> axis. (research center manufactured crystal)
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DESY setup configuration

Calorimeter Signal - Energy loss of

— axial, simulated
—— random, simulated
+ axial

random (28 mrad)

Clear difference in energy loss distribution.
In axial orientation : peaks above 2.5 GeV,
In amorphous orientation it vanishes as typical for
Bremsstrahlung

Bandiera et al. [4]

05/11/2024 2" FCC France & Italy workshop Nicola Canale



Active Photon Converter (APC)

Active Photon Converter (Photon multiplicity counter) ﬁ,
axial to amorphous signal of

- simulated |  Clear enhancement of photon
-+=+ single-MIP peak 1  production in axial orientation
=<+ experimental I - i case

Ca-F1 I
A N B -
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energy deposit in APC-DC, Egep [MeV]

Bandiera et al. [4]
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CERN PS

Electron beams at 6 GeV/¢

W of ( ) aligned anng <117> axis. (industrial manufactured crystals)
of ( ) aligned anng axis. ( manufactured crystals)
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For both the W and Ir aligned along the

and the <110> axes, respectively, the radiative energy loss

distribution peaks above 3.5 GeV, while for amorphous orientation it vanishes as typical for Bremsstrahlung

Calorimeter Signal

amorphous -- 38mrad, average: 2.57 GeV
— axial, average: 3.06 GeV

Calorimeter Signal

amorphous -- 70 mrad, average: 2.52 GeV

— axial, average: 3.41 GeV

T T T T

Energy deposited in calorimeter (GeV)
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For both the W and Ir aligned along the and the <110> axes, respectively, the radiative energy loss
distribution peaks above 3.5 GeV, while for amorphous orientation it vanishes as typical for Bremsstrahlung

Calorimeter Signal Calorimeter Signal
Ir Tmm <110> Ir2 mm<110>

amorphous -- 40 mrad, average: 2.82 GeV
—— axial, average: 3.22 GeV

amorphous -- 14.4 mrad, average: 2.92 GeV
— axial, average: 3.26 GeV

T T T T T

Energy deposited in calorimeter (GeV) Energy deposited in calorimeter (GeV)
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- Transition

‘@;A CERN setup configuration

For both the W and Ir aligned along the and the <110> axes, respectively, the radiative energy loss
distribution peaks above 3.5 GeV, while for amorphous orientation it vanishes as typical for Bremsstrahlung

Calorimeter Signal Calorimeter Signal Calorimeter Signal
Ir Tmm <110>

(1/GeV)
(1/GeV)

dN
NdE

dN
NdE

amorphous -- 38mrad, average: 2.57 GeV
—— axial, average: 3.06 GeV

1 —— 4 mrad, average: 3.00 GeV
—— 8 mrad, average: 2.77 GeV

—— 16 mrad, average: 2.72 GeV

amorphous -- 70 mrad, average: 2.52 GeV
—— axial, average: 3.41 GeV

| —— 6 mrad, average: 3.05 GeV
—— 10 mrad, average: 2.78 GeV

—— 22 mrad, average: 2.62 GeV

2 3 a4 5 g
Energy deposited in calorimeter (GeV)

05/11/2024 2" FCC France & Italy workshop

2 3 4 5
Energy deposited in calorimeter (GeV)
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amorphous -- 40 mrad, average: 2.82 GeV

axial, average: 3.22 GeV

3.5 mrad, average: 3.06 GeV
7.5 mrad, average: 3.03 GeV
15 mrad, average: 2.73 GeV

Energy deposited in calorimeter (GeV)




- Tra n S i't i O n @ CERN setup configuration

We observed continuous transition from

(1/GeV)

dN
NdE

amorphous to aligned mode with the axis, extending 15 mrad,
/.e. much wider the critical angle (~0.6 mrad).

Calorimeter Signal

amorphous -- 38mrad, average: 2.57 GeV
axial, average: 3.06 GeV

4 mrad, average: 3.00 GeV
8 mrad, average: 2.77 GeV

16 mrad, average: 2.72 GeV

05/11/2024

T T T T T
6

Energy deposited in calorimeter (GeV)

2 FCC France & Italy workshop

(1/GeV)

dN
NdE

Calorimeter Signal

amorphous -- 70 mrad, average: 2.52 GeV
axial, average: 3.41 GeV

6 mrad, average: 3.05 GeV
10 mrad, average: 2.78 GeV

22 mrad, average: 2.62 GeV

Nicola Canale

Energy deposited in calorimeter (GeV)

Calorimeter Signal
Ir Tmm <110>

amorphous -- 40 mrad, average: 2.82 GeV
axial, average: 3.22 GeV

3.5 mrad, average: 3.06 GeV

7.5 mrad, average: 3.03 GeV

15 mrad, average: 2.73 GeV

\

Energy deposited in calorimeter (GeV)

T
6




Active Photon Converter (APC)

APC Signal ﬁ,

amorphous -- 70 mrad
Integral 0.99

mean 1236.51 ADC

axial
Integral 1.00
mean 1862.74 ADC

Clear enhancement of the energy
deposited in the second scintillator,
thus more photon production in axial
orientation case

PDF [log]

T T T T T T
0 1000 2000 3000 4000 5000 6000

APC2 signal [ADC]
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SIMULATION CODE
VALIDATION LN



Our simulation code WORKS ! s seup cofgutor

Calorimeter Signal — Energy loss of The results from beam tests conducted at DESY
and CERN PS with the Monte Carlo
simulation:

— axial, simulated » The whole setup was simulated using the
= random, simulated Geant4 toolkit with the new

+ axial
random (28 mrad)

G4ChannelingFastSim library

« The output file encompassing all secondary y
and e particles considers the interactions
within the entire experimental setup.

2 3 4 5
Energy loss [GeV] Bandiera et al. [4]
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Our simulation code WORKS |

Calorimeter Signal — Energy loss of The results from beam tests conducted at DESY
and CERN PS with the Monte Carlo
_ simulation:
B o « The whole setup was simulated using the
measure, axial Geant4 toolkit with the new

»  measure, random

G4ChannelingFastSim library

« The output file encompassing all secondary y
and e particles considers the interactions
within the entire experimental setup.

>
1]
9
—_—
—~
w
o
-
=
o
X
=
==
—~
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Our simulation code WORKS |

Calorimeter Signal - Energy loss of The results from beam tests conducted at DESY
and CERN PS with the Monte Carlo
_ simulation:
B o « The whole setup was simulated using the
measure, axial Geant4 toolkit with the new

» measure, random

G4ChannelingFastSim library

« The output file encompassing all secondary y
and e particles considers the interactions
within the entire experimental setup.

>
1]
O
—_—
—~
w
o
-
=
o

X
=
==
—~

Once the simulation environment was validated
against experimental findings, efforts were
directed towards optimizing the FCC-ee positron

source scheme.

Parameters chosen for the FCC-ee positron
source optimization via Geant4
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Our simulation code WORKS |

Calorimeter Signal - Energy loss of The results from beam tests conducted at DESY
and CERN PS with the Monte Carlo
_ simulation:
B o « The whole setup was simulated using the
measure, axial Geant4 toolkit with the new

& measure, random

G4ChannelingFastSim library

o

« The output file encompassing all secondary y
and e particles considers the interactions
within the entire experimental setup.

o
N
o

o
=
w

>
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—_—
—
w
o
-
=
o

X
=
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—~

o

Once the simulation environment was validated
against experimental findings, efforts were
directed towards optimizing the FCC-ee positron

source scheme.

As seen in A. SytOV and G,Paterm‘) Parameters chosen for the FCC-ee positron

source optimization via Geant4

talks of 05/11/2024 o
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Future Perspective

e Future test at CERN PS

« New energy baseline (e 2.86GeV/c)
» Single crystal

» Comparison with simulations:
e W1.5mm
e Ir

» Optimization of the hybrid source
for 2.86 GeV/c
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Future Perspective

» Comparison with simulations: * Future test at CERN PS
« W1.5mm  New energy baseline (e 2.86GeV/c )
o Ir * Single crystal

» Optimization of the hybrid source
for 2.86 GeV/c
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Research center crystals quality check

Imaging of the sample mosaicity measured at
BMOS5 beamline of ESRF.

Color indicates the mosaicity of the sample

Characterization of mosaicity of the lattice performed
at ESR Syncrothron (Grenoble, France)
(20 keV X rays)

Mosaicity < 60 prad.

largest mosacity are still below 150 prad near
the scraches

DDDEI
REmsms
In crystallography, the mosaicityis a

measure of the spread of crystal
plane orientations




Industrial crystals quality check @)

Characterization of superficial mosaicity of the lattice performed
with High Resolution XRD at laboratories of Ferrara (@ 8.04 keV)

Ir <110> 2 mm

vertical



Industrial crystals quality check

Characterization of superficial mosaicity of the lattice performed
with High Resolution XRD at laboratories of Ferrara (@ 8.04 keV)

FWHM of industrial crystal is wider than the critical angle,
the coherent effects are still available?

Ir <110> 1 mm Ir <110> 2 mm
vertical vertical horizontal
8000




Ir <110> 2 mm Ir <110> 2 mm Ir <110> 1 mm Ir <110> 1 mm
vertical

horizontal vertical orizontal

Intensity
Intensity
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S
S
S

>
S
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=
9]
=
5
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Angle (mrad)
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Si microstrip layers Si microstrip layers

input tracker

The setup

Chamber 2 position map

output tracker

crystal A\
goniometer
N >

Bxin axial

100000 -

Hit position on Chamber
weighted by Calo signal

input tracker

~2 X 2 or 9.5 X 9.5 cm? xy double-
sided Si microstrip sensors, with an
overall ~10 pm single-hit resolution
self-triggering on strip to select the
proper area

0

copper + plastic scintillators (APC)

Photon muliplicity co‘untel I n p ut st a g e
! [E— Reconstruct track and

calorimeter

impinging angle on the crystal

magnet

divergence axial
5000

0
O [urad]

I,y reconstructed at crystal entrance

J,, = arctan (Ax/ diy)




Si microstrip layers Si microstrip layers

input tracker

The setup

Chamber 2 position map

output tracker

crystal A\
goniometer
N >

Bxin axial

100000 -

Logical cut on more effective area
(crystallite)

Hit position on Chamber
weighted by Calo signal

input tracker

~2 X 2 or 9.5 X 9.5 cm? xy double-
sided Si microstrip sensors, with an
overall ~10 pm single-hit resolution
self-triggering on strip to select the
proper area

0

copper + plastic scintillators (APC)

Photon muliplicity co‘untel I n p ut st a g e
! [E— Reconstruct track and

calorimeter

impinging angle on the crystal

magnet

divergence axial
5000

0
O [urad]

I,y reconstructed at crystal entrance

J,, = arctan (Ax/ diy)




Si microstrip layers Si microstrip layers copper + plastic scintillators (APC)

input tracker output tracker Photon multiplicity counter
\ \ crystal A\ \ n p u s a g e
i +

The setup B Ji

~f Electromagnetic Reconstruct traCk and

calorimeter

impinging angle on the crystal

magnet

Chamber 2 position map 8,in axial divergence axial

100000 -

Logical cut on more effective area 0 Sl |gh:t|y.|mprovab|e W|th
Labii 4 an eliptic cut on the angle

Hit position on Chamber U,y reconstructed at crystal entrance

weighted by Calo signal

. 9, = arctan(Ax/dlz)
input tracker

~2 X 2 or 9.5 X 9.5 cm? xy double-
sided Si microstrip sensors, with an
overall ~10 pm single-hit resolution
self-triggering on strip to select the
proper area
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Summary

Materigl  AXial/amorph  Axial/amorph

axial/amorphous ratio axial/famorphous ratio axialfamorphous ratio Calo APC2
for different materials for different materials (Calorimeter means only) for different materials (APC2 means cnly)

m—trean Calo | Ir_1Tmm ~114 % ~129 %
120 4 <110>

Ir_2mm ~112 % ~106 %
<110>

100 -

80

60

¥
2
o
£L
o
5
5
3
)
o

axial/amerphous ratio [%]

40

~119 % ~108 %

axial/famorphous ratio [%)]

~135 % ~133%

Material Material Material ~ 'I 3 80/0 N O-t
calculated
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Conventional scheme limitations -

Conventional scheme

Thick amorphous
target



Conventional scheme limitations

Conventional scheme current  ieaby the target)

* Average energy deposition

- o
_ « Peak Energy Deposition Density (PEDD)
e 3 Y —> Inhomogeneous and instantaneous energy deposition, that
> § cause thermomechanical stresses due to temperature
o gradient

Thick amorphous
target



Conventional scheme limitations

Conventional scheme current  ieaby the target)

« Average energy deposition

‘ et —> target heating/melting

Thick amorphous
target



Conventional scheme limitations

Conventional scheme current  ieaby the target)

« Average energy deposition

‘ ot —> target heating/melting
_ « Peak Energy Deposition Density (PEDD)
c 3 Y —> Inhomogeneous and instantaneous energy deposition, that
> § cause thermomechanical stresses due to temperature
e- gradient

Thick amorphous
target

et source set a critical constraint for the peak and average current —= Luminosity Constraint!

Expecially for future Linacs



Hybrid crystal based positron source for e'e*colliders

|dea of R. Chehab, A. Variola, V. Strakhovenko and X. Artru [2]

Conventional scheme Hybrid positron source

=7

Thick amorphous “Thin” oriented crystalline target (< X;) Amorphous
target photon radiator target-converter



Hybrid crystal based positron source for e'e*colliders

|dea of R. Chehab, A. Variola, V. Strakhovenko and X. Artru [2]

Conventional scheme Hybrid positron source

Thick amorphous “Thin” oriented crystalline target (< X;) Amorphous
target photon radiator target-converter

“Thin” crystal radiator, with thickness < X,

will limit the heating, enhance the radiation
and thus increase the target reliability




Coherent effects for crystal-based positron sources

Crystalline photon radiator

“Thin” oriented crystalline target (< X,)
photon radiator

Photon spectrum X. Artru et al. [3]

:‘ig‘l (a)
\ — amorphous

(0)

0 1
8 GeV e’beam E (GeV)

Hybrid positron source

1. Enhancement of
photon generation in
crystals in coherent

conditions =

“Thin” crystal (< Xg)

photon radiator

Positron spectrum

(b)

enhancement of pair
production in the
Amorphous
target-converter converter targ et

X. Artru et al. [3]

v CLYSTAl
— amorphous

400 500
E (MeV)



Coherent effects for crystal-based positron sources

i i Hybrid positron source
Crystalline photon radiator y P 1. Enhancement of

=7 photon generation in
crystals in coherent
conditions -
enhancement of pair
“Thin” oriented crystalline target (< X,) “Thin” crystal (< X,) Amorphous pTOdUCtIOH URUT
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