

Experiments on crystal radiators at DESY TB and CERN PS

2nd FCC-France&Italy workshop - Venice

Nicola Canale

on behalf of F. Alharthi, A. Bacci, L. Bandiera, D. Boccanfuso, S. Carsi, I. Chaikovska, R. Chehab, D. De Salvador, P. Fedeli, V. Guidi, V. Haurylavets, O. Iorio, G. Lezzani, L. Malagutti, S. Mangiacavalli, A. Mazzolari, P. Monti Guarnieri, V. Mytrochenko, R. Negrello, G. Paternò, M. Prest, M. Romagnoni, M. Rossetti Conti, A. Selmi, F. Sgarbossa, M. Soldani, A. Sytov, V. Tikhomirov, E. Vallazza

INFN Ferrara ncanale@fe.infn.it

Outlook

As presented in talks by A. Sytov and G. Paternò, crystal-based positron sources offer promising potential for future colliders.

Here, we will see the test beam results on crystal radiators, which serve as a crucial benchmark for simulation code validation.

Outlook

As presented in talks by A. Sytov and G. Paternò, crystal-based positron sources offer promising potential for future colliders.

Here, we will see the test beam results on crystal radiators, which serve as a crucial benchmark for simulation code validation.

- THE CRYSTALS
- EXPERIMENTAL SETUP
- TESTBEAM RESULTS

THE CRYSTALS

Material: Tungsten (W) channelling Axis: <100> $\theta_c \approx 0.5$ mrad Thickness: 2.25 mm (0.64 X0) (research center manufactured crystal)

Material: Tungsten (W) channelling Axis: <111> (most efficient) $\theta_c \approx 0.6$ mrad Thickness: 1.5-2 mm (0.43 – 0.57 X0) (industrially manufactured crystals)

Material: Iridium (Ir) channelling Axis: <110> (most efficient) $\theta_c \approx 0.6$ Thickness: 1 -2 mm (0.34 – 0.68 X0) (industrially manufactured crystals)

Tested at DESY T21 beamline with 5.6 GeV/c electrons

Material: Tungsten (W) channelling Axis: <100> $\theta_c \approx 0.5$ mrad Thickness: 2.25 mm (0.64 X0) (research center manufactured crystal)

Research Center quality crystal

Tested at DESY T21 beamline with 5.6 GeV/c electrons

Material: Tungsten (W) channelling Axis: <111> (most efficient) $\theta_c \approx 0.6$ mrad Thickness: 1.5-2 mm (0.43 – 0.57 X0) (industrially manufactured crystals)

Material: Iridium (Ir) channelling Axis: <110> (most efficient) $\theta_c \approx 0.6$ Thickness: 1 -2 mm (0.34 – 0.68 X0) (industrially manufactured crystals)

Material: Tungsten (W) channelling Axis: <100> $\theta_c \approx 0.5$ mrad Thickness: 2.25 mm (0.64 X0) (research center manufactured crystal)

Research Center quality crystal

Tested at DESY T21 beamline with 5.6 GeV/c electrons

Material: Tungsten (W) channelling Axis: <111> (most efficient) $\theta_c \approx 0.6$ mrad Thickness: 1.5-2 mm (0.43 – 0.57 X0) (industrially manufactured crystals)

> W 2mm baseline for Hybrid source radiator - 1.5mm for optimization studies

Material: Iridium (Ir) channelling Axis: <110> (most efficient) $\theta_c \approx 0.6$ Thickness: 1 -2 mm (0.34 – 0.68 X0) (industrially manufactured crystals)

Material: Tungsten (W) channelling Axis: <100> $\theta_c \approx 0.5$ mrad Thickness: 2.25 mm (0.64 X0) (research center manufactured crystal)

Tested at DESY T21 beamline with 5.6 GeV/c electrons

Material: Tungsten (W) channelling Axis: <111> (most efficient) $\theta_c \approx 0.6$ mrad Thickness: 1.5-2 mm (0.43 – 0.57 X0) (industrially manufactured crystals)

> W 2mm baseline for Hybrid source radiator - 1.5mm for optimization studies

Material: Iridium (Ir) channelling Axis: <110> (most efficient) $\theta_c \approx 0.6$ Thickness: 1 -2 mm (0.34 – 0.68 X0) (industrially manufactured crystals)

Research Center quality crystal expression of the source radiator - 1.5mm and Higher potential, interesting alternative

EXPERIMENTAL SETUP

The setup

Provided by INFN Milano Bicocca team – Erik Vallazza & Michela Prest

The setup

Provided by INFN Milano Bicocca team – Erik Vallazza & Michela Prest

The setup CERN DESY configuration configuration Si microstrip layers Si microstrip layers copper + plastic scintillators (APC) **Photon multiplicity counter** input tracker output tracker crystal on goniometer $e^$ e

Input stage Reconstruct track and impinging angle on the crystal

The setup **CERN DESY** configuration configuration Si microstrip layers Si microstrip layers copper + plastic scintillators (APC) Photon multiplicity counter input tracker output tracker crystal on goniometer ϵ e^-

Input stage Reconstruct track and impinging angle on the crystal

The setup - input stage

Input tracker

~ 2×2 cm² *xy* double-sided Si microstrip sensors, with an overall $~10 \mu m$ single-hit resolution.

~ 9.5⨉9.5 cm2 *xy* double-sided Si microstrip sensors, with an overall $~40~\mu m$ single-hit resolution.

Goniometer from LNL & UNIPD

Fine-grained, remote-controlled movements along *x*, *y*, $θ_x$ and $θ_y$ with ~5 μm, 1 μrad resolution.

DESY.

Si microstrip layers Si microstrip layers input tracker output tracker crystal

The setup - the crystal

Material: Tungsten (2.25 mm) channelling Axis: <100> Axial potential: 1 keV $\theta_c \approx 0.5$ mrad-

DESY.

Material: Tungsten (1.5-2 mm) channelling Axis: <111> Axial potential: 1 keV $\theta_c \approx 0.6$ mrad

Material: Iridium (1-2 mm) channelling Axis: <110> Axial potential: 1 keV $\theta_c \approx 0.6$ mrad

CERN configuration

copper + plastic scintillators (APC)

Photon multiplicity counter

e

DESY configuration

on goniometer

The setup - output tracker

output tracker As multilpicity counter to align the crystal

The setup - magnet

CERN configuration DESY configuration

Magnet Select only the photons

on goniometer

The setup - output stage

Si microstrip layers Si microstrip layers input tracker output tracker crystal

APC + Cu converter Photon mutiplicity counter

copper + plastic scintillators (APC) **Photon multiplicity counter**

e

CERN

DESY configuration

configuration

Electromagnetic

The setup - output stage

configuration

CERN

DESY configuration

Radiated energy loss calorimeter signal

The setup - output stage

An Active Photon Converter (APC) based on plastic scintillators and thin layers of copper $(0.2X_0)$ for photo conversion

Calorimeters consists in

 3×3 matrix of BGO blocks, PMT-based readout

• (OPAL) Lead glass blocks read out by PMTs

Active Photon Converter (APC)

TESTBEAM RESULTS

DESY T21 line

Electron beams at 5.6 GeV/^c

W of 2.25 mm (0.64 X0) aligned along <100> axis.

(research center manufactured crystal)

Radiated energy loss DESY setup configuration

Clear difference in energy loss distribution. In axial orientation : peaks above 2.5 GeV, In amorphous orientation it vanishes as typical for Bremsstrahlung

Bandiera et al. [4]

Active Photon Converter (Photon multiplicity counter)

simulated

axial to amorphous signal of W 2.25mm $(\sim 0.65X_0)$ <001>

Active Photon Converter (APC)

10

Bandiera et al. [4]

W of $1.5 - 2$ mm $(0.43 - 0.57 X0)$ aligned along <111> axis. (industrial manufactured crystals) Ir of $1 - 2$ mm $(0.34 - 0.68 \text{ X0})$ aligned along <110> axis. (industrial manufactured crystals)

Radiated energy loss \sqrt{m} CERN setup configuration

For both the W and Ir aligned along the <111> axes and the <110> axes, respectively, the radiative energy loss distribution peaks above 3.5 GeV, while for amorphous orientation it vanishes as typical for Bremsstrahlung

Radiated energy loss

For both the W and Ir aligned along the <111> axes and the <110> axes, respectively, the radiative energy loss distribution peaks above 3.5 GeV, while for amorphous orientation it vanishes as typical for Bremsstrahlung

Radiated energy loss - Transition

For both the W and Ir aligned along the <111> axes and the <110> axes, respectively, the radiative energy loss distribution peaks above 3.5 GeV, while for amorphous orientation it vanishes as typical for Bremsstrahlung

Calorimeter Signal

Calorimeter Signal Ir 1mm <110>

Radiated energy loss - Transition

For an amorphous to aligned mode with the axis, extending 15 mrad, $d = 3$ GeV, which is a peak side of the amorphous orientation in $d = 0$ (more) We observed continuous transition from *i.e.* much wider the critical angle (~0.6 mrad).

Active Photon Converter (APC) FOR CERN setup configuration

Clear enhancement of the energy deposited in the second scintillator, thus more photon production in axial orientation case

SIMULATION CODE VALIDATION

Calorimeter Signal – Energy loss of W 2.25mm $(\sim 0.65X_0)$ <001>

The results from beam tests conducted at DESY and CERN PS agrees with the Monte Carlo simulation:

- The whole setup was simulated using the Geant4 toolkit with the new *G4ChannelingFastSim* library *A. Sytov et al. [5 – 6]*
- The output file encompassing all secondary γ and e± particles considers the interactions within the entire experimental setup. *Bandiera et al. [4]*

The results from beam tests conducted at DESY and CERN PS agrees with the Monte Carlo simulation:

- The whole setup was simulated using the Geant4 toolkit with the new *G4ChannelingFastSim* library *A. Sytov et al. [5 – 6]*
- The output file encompassing all secondary γ and e± particles considers the interactions within the entire experimental setup. *Bandiera et al. [4]*

Calorimeter Signal – Energy loss of W 2mm $({\sim}0.57X_0)$ <111> Geant4, axial 0.35 Geant4, random measure, axial 0.30 measure, random Solution

U.S. 20

Solution

Solution

X

Solution

X

Colution

X

X

Colution

X

X

X

X

X

X

X

X $\sum_{0.10}$ 0.05 0.00 5 Energy loss [GeV]

The results from beam tests conducted at DESY and CERN PS agrees with the Monte Carlo simulation:

- The whole setup was simulated using the Geant4 toolkit with the new *G4ChannelingFastSim* library *A. Sytov et al. [5 – 6]*
- The output file encompassing all secondary γ and e± particles considers the interactions within the entire experimental setup. *Bandiera et al. [4]*

Once the simulation environment was validated against experimental findings, efforts were directed towards optimizing the FCC-ee positron source scheme.

Parameters chosen for the FCC-ee positron source optimization via Geant4

Calorimeter Signal – Energy loss of W 2mm $({\sim}0.57X_0)$ <111> Geant4, axial 0.35 Geant4, random measure, axial 0.30 measure, random Solution

U.S. 20

Solution

Solution

X

Solution

X

Colution

X

X

Colution

X

X

X

X

X

X

X

X

 \leq 0.10

 0.05

0.00

The results from beam tests conducted at DESY and CERN PS agrees with the Monte Carlo simulation:

- The whole setup was simulated using the Geant4 toolkit with the new *G4ChannelingFastSim* library *A. Sytov et al. [5 – 6]*
- The output file encompassing all secondary γ and e± particles considers the interactions within the entire experimental setup. *Bandiera et al. [4]*

Once the simulation environment was validated against experimental findings, efforts were directed towards optimizing the FCC-ee positron source scheme.

Parameters chosen for the FCC-ee positron source optimization via Geant4

FUTURE PERSPECTIVE

Future Perspective

- Comparison with simulations:
	- W 1.5 mm
	- Ir
- Optimization of the hybrid source for 2.86 GeV/c
- Future test at CERN PS
	- New energy baseline (e-2.86GeV/c)
	- Single crystal

Future Perspective

- Comparison with simulations:
	- W 1.5 mm
	- Ir
- Optimization of the hybrid source for 2.86 GeV/c
- Future test at CERN PS
	- New energy baseline (e-2.86GeV/c)
	- Single crystal

Optimization of hybrid and single crystal including test of radiator converter for CHART P3 project

Further contact:

Laura Bandiera (INFN-Ferrara) bandiera@fe.infn.it

Iryna Chaikovska (IJCLab) iryna.chaikovska@ijclab.in2p3.fr

References and Aknowledgment

References:

[1] Frank Zimmermann, FCC Week 2024 10-14 June [2] R. Chehab et al., NIM B 266 (2008) [3] X. Artru, I. Chaikovska, R.Chehab *et al*. NIM B 355 (2015) [4] L. Bandiera *et al*., Eur. Phys. J. C 82 (2022) [5] A. Sytov *et al.* Phys. Rev. Accel. Beams 22 (2019) [6] A. Sytov *et al.* JKPS 83 (2023)

Acknowledgement:

We acknowledge financial support under the National Recovery and Resilience Plan (NRRP), Call for tender No. 104 published on 02.02.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU – Project Title : "*Intense positron source Based On Oriented crySTals - e+BOOST*" 2022Y87K7X– CUP I53D23001510006

BACKUP

CRYSTAL CHARACTERIZATION

Research center crystals quality check

Imaging of the sample mosaicity measured at BM05 beamline of ESRF.

Color indicates the mosaicity of the sample

Characterization of mosaicity of the lattice performed at ESR Syncrothron (Grenoble, France) (20 keV X rays)

Mosaicity ≤ 60 µrad.

largest mosacity are still below 150 μrad near the scraches

In crystallography, the mosaicity *is a measure of the spread of crystal plane orientations*

Industrial crystals quality check

Characterization of superficial mosaicity of the lattice performed with High Resolution XRD at laboratories of Ferrara (@ 8.04 keV)

Industrial crystals quality check

Characterization of superficial mosaicity of the lattice performed with High Resolution XRD at laboratories of Ferrara (@ 8.04 keV)

FWHM of industrial crystal is wider than the critical angle, the coherent effects are still available?

Summary of HRXRD test for CERN samples

INPUT TRACKERS

Reconstruct track and impinging angle on the crystal

Hit position on Chamber weighted by Calo signal

input tracker

 \sim 2 \times 2 or 9.5 \times 9.5 cm² xy doublesided Si microstrip sensors, with an overall ~10 μm single-hit resolution self-triggering on strip to select the proper area

Reconstruct track and impinging angle on the crystal

Hit position on Chamber weighted by Calo signal

input tracker

 \sim 2 \times 2 or 9.5 \times 9.5 cm² xy doublesided Si microstrip sensors, with an overall ~10 μm single-hit resolution self-triggering on strip to select the proper area

Reconstruct track and impinging angle on the crystal

Hit position on Chamber weighted by Calo signal

input tracker

 \sim 2 \times 2 or 9.5 \times 9.5 cm² xy doublesided Si microstrip sensors, with an overall ~10 μm single-hit resolution self-triggering on strip to select the proper area

RESULTS SUMMARY

Summary

CONVENTIONAL e+ SOURCE PROBLEMS

As seen in A.Sytov and G.Paternò talks

Conventional scheme

As seen in A.Sytov and G.Paternò talks

Conventional scheme Current (Limited by the target)

• Average energy deposition \Rightarrow target heating/melting

As seen in A.Sytov and G.Paternò talks

Conventional scheme Current (Limited by the target)

- Average energy deposition target heating/melting
- Peak Energy Deposition Density (PEDD)
	- Inhomogeneous and instantaneous energy deposition, that cause thermomechanical stresses due to temperature gradient

As seen in A.Sytov and G.Paternò talks

Conventional scheme Current (Limited by the target)

- Average energy deposition \Rightarrow target heating/melting
- Peak Energy Deposition Density (PEDD)
	- Inhomogeneous and instantaneous energy deposition, that cause thermomechanical stresses due to temperature gradient

e⁺ source set a critical constraint for the peak and average current \longrightarrow Luminosity Constraint! Expecially for future Linacs

Hybrid crystal based positron source for e^{-e+}colliders

Idea of R. Chehab, A. Variola, V. Strakhovenko and X. Artru [3]

Hybrid crystal based positron source for e^{-e+}colliders

Idea of R. Chehab, A. Variola, V. Strakhovenko and X. Artru [3]

and thus increase the target reliability

Bandiera et al. [4]

