(Update on) Higgs self-coupling determination at the FCC-hh

Angela Taliercio, Paola Mastrapasqua, Birgit Stapf 05.11.2024 | FCC Italy France workshop

Higgs self-coupling @ FCC-hh: What & why?

- Measuring the Higgs self-coupling allows us to gain insight into the nature of the Higgs potential and electroweak symmetry breaking
- FCC-hh: pp-collisions at 100 TeV, 30 ab⁻¹ in ~25 years
- Measuring the Higgs self-coupling via di-Higgs production is key benchmark for FCC-hh
 - SM: $\sigma(ggHH) \sim O(1000)$ smaller than $\sigma(ggH)$
 - Large cross-section and data-set at FCC-hh
 - 20 x precision of HL-LHC

Di-Higgs final states

<u>HH measurements</u>:

- Very low cross section
- Challenging final state
- Trade off between purity and high branching ratio

Overview of Higgs self-coupling limits & prospects

- At LHC we set limits: $-0.4 < \kappa_{\lambda} < 6.3$ (<u>ATLAS-HDBS-2022-03</u>)
- Only at future colliders we will reach a precision measurement

Our work: Update of $\overline{b}byy$ and adding $\overline{b}bll + E_T^{miss}$

• Studying only ggF HH	Final state	BR(HH→X)	Description
production mode (so far) bb 33.6% Assuming SM Higgs BR BR HH \rightarrow xxyy (m _H = 125 GeV) arXiv:1708.08249 10 ⁻¹ 10 ⁻²	Бbуу	0.26%	 Rare, but high precision DNN-based analysis What is the ultimate precision that can be reached?
99 ττ 7.3% ZZ 3.1% γγ 0.26% 0.1% rarer bb WW 99 ττ ZZ γγ rarer	bbll+E _T ^{miss}	3.24%	 Summing contributions from <i>bbWW(lvlv)+bbττ(llvlv)+bbZZ(llvv)</i> Larger BR, but more background contaminated, limited precision Cut-based analysis New for FCC-hh

bbyy analysis

bbyy analysis: Introduction

The *byy* channel is the most sensitive one and it was already studied by previous paper achieving at best 3.8% (3.4% stat only) precision on the self coupling

bbyy analysis: Introduction

bbyy analysis: Introduction

Is this the ultimate precision that we can reach on the self coupling? Can we improve this result? If yes how?

- New detector simulation
 - First time that we simulate an 'ideal' detector, in the previous studies it was reweighted from the main FCC-hh scenario

byy analysis: Introduction

Is this the ultimate precision that we can reach on the self coupling? Can we improve this result? If yes how?

- New detector simulation
- New analysis strategy
 - We tried 2 main analysis strategy and compared the results

byy analysis: Introduction

Is this the ultimate precision that we can reach on the self coupling? Can we improve this result? If yes how?

- New detector simulation
- New analysis strategy
- Check which is the most sensitivity observable and try to improve it
 - Different assumptions on $m_{\overline{hh}}$ resolution
 - Different assumptions on $m_{\gamma\gamma}^{\mu\nu}$ resolution (coming soon)
 - Different assumptions on center of mass energy

3DNNs as for the baseline analysis:

• 'ttH-killer' trained signal vs ttH background (93% AUC)

- *t*t*H* enhanced same final state as signal signature
 - $\sigma(\bar{t}\bar{t}H\rightarrow\gamma\gamma)\sim 30 \sigma(ggHH\rightarrow bb\gamma\gamma)$

- Exploit expected differences in kinematics:
 - $\overline{t}tH$ more jets, but less energetic
 - $\overline{tt}H$ can contain high pT leptons

3DNNs as for the baseline analysis:

- 'ttH-killer' trained signal vs ttH background (93% AUC)
- 'High Mx region DNN' trained signal vs all background but ttH (82% AUC)
- 'Low Mx region DNN' trained signal vs all background but ttH (74% AUC)

- Separate DNNs for suppressing non- background, using same input variables as *t*tH tagger
- Optimization of cuts based on significance

3DNNs as for the baseline analysis:

- 'ttH-killer' trained signal vs ttH background (93% AUC)
- 'High Mx region DNN' trained signal vs all background but ttH (82% AUC)
- 'Low Mx region DNN' trained signal vs all background but ttH (74% AUC)

 m_{bb} splitting:

- 1 $m_{\overline{bb}}$ bin (m_{\overline{bb}} distribution not used)
- $2 m_{\overline{bb}}$ bins (sideband + central region)
- optimal mbb binning ($m_{\overline{bb}}$ in bins that are determined by the significance)

$\overline{b}byy$ analysis: Strategy 1 (Run2 like analysis 2 m_b bins)

byy analysis: Strategy 2

1DNN with all the backgrounds in (87% AUC)

 $\circ~$ AUC is compatible with the mean of the AUCs used in strategy 1 $\rightarrow~$ the sensitivity at the end should be the same

 m_{bb} splitting:

- 1 $m_{\overline{bb}}$ bin (m_{bb} distribution not used)
- $2 m_{\overline{bb}}$ bins (sideband + central region)
- optimal mbb binning ($m_{\overline{bb}}$ in bins that are determined by the significance)

bbyy analysis: Strategy 2 overview (2 m_{*bb*} bins splitting)

bbyy analysis: Strategies comparison and results

Strategy 1 and strategy 2 gave the same results:

• Improve the DNN splitting doesn't really optimize the analysis

Does the $m_{\overline{bb}}$ splitting optimize the sensitivity?

bbyy analysis: Strategies comparison and results

Strategy 1 and strategy 2 gave the same results:

• Improve the DNN splitting doesn't really optimize the analysis

Does the m_{bb} splitting optimize the sensitivity?

bbyy analysis: Strategies comparison and results

Does the m_{bb} splitting optimize the sensitivity?

Why the solution with 2 $m_{\overline{bb}}$ binning or a $m_{\overline{bb}}$ optimize
binning lead to the same precision on κ_{λ} ?1 $m_{\overline{bb}}$ 2 $m_{\overline{bb}}$ $m_{\overline{bb}}$ optBinStat only3.8%3.2%Syst I4.4%3.6%

It's time to investigate properly the $m_{\overline{bb}}$ distribution

byy analysis: the road to 1% precision on self coupling

We assume a gaussian resolution of 10 GeV for the $m_{\overline{bb}}$ of the signal

	m _{<i>ы</i>} optBin	Old result
Stat only	2.5%	3.4%
Syst I	2.7%	3.8%

1.5x improvement versus the older results

Seems that the resolution on $m_{\overline{bh}}$ is the key to achieve better precision on k_{λ}

byy analysis: the road to 1% precision on self coupling

What happens if we assume better resolution for the $m_{\overline{bb}}$ mass?

	Stat only	Syst 1	Already bett that what quoted in th documentat (3.8% syst 1)	Already better
No assumption on $m_{\overline{bb}}$ resolution	3.2%	3.6%		that what quoted in the documentation
10 GeV <i>m_{bb}</i> res	2.5%	2.7%		(3.8% SYSt 1)

byy analysis: the road to 1% precision on self coupling

What happens if we assume better resolution for the $m_{\overline{bb}}$ mass?

	Stat only	Syst 1	Already better
No assumption on m_{bb} resolution	3.2%	3.6%	that what quoted in the documentation
10 GeV m _{bb} res	2.5%	2.7%	(3.8% syst 1)
5 GeV m _{bb} res	2.0%	2.3%	-
3 GeV m _{bb} res	1.8%	2.0%	

bbyy at 80 and 120 TeV center of mass energy assumptions

bbyy analysis: center of mass energy scan

We produced samples for the 80,100,120 TeV scenarios as well

byy analysis: center of mass energy scan

Precision on the self coupling as a function of the different assumptions on $m_{\overline{bb}}$

*table with numbers in backup

Conclusion and ongoing work

We restarted the effort of FCC-hh Higgs self-coupling studies:

• Common software tools, working on integration of our developments into the main repositories

Conclusion and ongoing work

Бbуу

- We studied several analysis configuration to test the stability of our results and the precision to which we are able to measure the self coupling
 - Not much difference in applying 3 or 1 DNN, but very sensitive to the m_{bb} resolution/splitting
- Reaching ~1% precision on κ_{λ} seems possible only if we are able to build a detector that can have a m_b resolution of 3GeV
- We studied different center of mass energy scenarios:
 - \circ ~~ 80 TeV and 120 TeV

Overview of Higgs self-coupling limits & prospects

Experiment	95% CL limit	Reference	Best case scenarios for Future Colliders			
ATLAS - HH	$-0.6 < \kappa_1 < 6.6$	ATLAS-HDBS-2022 -03	Experiment	$\delta\kappa_\lambda$ (68% CL)	Reference	
- H+HH	$-0.4 < \kappa_{\lambda}^{^{\prime}} < 6.3$		ILC (1 TeV)	10%	<u>arXiv:2203.07622</u> <u>v2</u>]
CMS	126765	<u>Nature 607 (2022)</u> <u>60</u>	CLIC (3 TeV)	9%	<u>arXiv:1812.01644</u> <u>v1</u>	J H+HH
- 111	$\frac{-1.2 < \kappa_{\lambda} < 0.3}{\delta \kappa_{\lambda} (68\% \text{ CL})}$		FCC-ee	24%	<u>JHEP01(2020)139</u>	} H only
HL-LHC	~50%	e.g.	μ (10 TeV)	~3.5%	arXiv:2203.07261 <u>v2</u>	нн
		22-005	FCC-hh	3.4%	<u>arXiv:2004.0</u> 3505v2	

bbyy analysis: center of mass energy scan

	80 TeV	100 TeV	120 TeV
No assumption on mbb	4.0% - st. only 3.6%	3.5% - st. only 3.4%	3.1% - st. only 2.8%
mbb res 10 GeV	2.5% - st. only 2.3%	2.2% - st. only 2.0%	1.9% - st. only 1.7%
mbb res 5 GeV	2.0% - st. only 1.9%	1.8% - st. only 1.6%	1.6% - st. only 1.4%
mbb res 3 GeV	1.8% - st. only 1.7%	1.6% - st. only 1.4%	1.5% - st. only 1.3%

$\overline{b}bll + E_T^{miss}$ analysis

$\overline{bbll} + E_T^{miss}$: Analysis strategy

*e*μ**-category**

- Signal signature: Lepton pair + E_T^{Miss} + 2 b-jets
 - Leptons isolated from b-jets ($\Delta R > 0.4$)
- Backgrounds from:
 - \overline{tt} and single top
 - $\overline{tt}V$
 - Single Higgs $(ggF, VBF, \overline{tt}H, VH)$
 - V+jets
 - <u>ttVV</u>
- Categorization of events based on lepton flavours and whether (on-shell) Z(ll) decay is present

$\overline{b}bll + E_T^{miss}$: Event kinematics & selection

Universität Hamburg

DER EDRECHTING I DER TEMPE I DER DITOTT

$\overline{b}bll + E_T^{miss}$: Event kinematics & selection

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Universität Hamburg

- <u>Stransverse mass</u> m_{T2} predicts invisible mass contribution
 - Capture the full *HH* decay

Results: Systematic uncertainties

Source of uncertainty	Syst. 1	Syst. 2	Syst. 3	Applies to	Correlated
Common systematics					
b-jet ID / b-jet	0.5%	1%	2%	Signals, MC bkgs.	1
Luminosity	0.5%	1%	2%	Signals, MC bkgs.	\checkmark
Signal cross-section	0.5%	1%	1.5%	Signals, MC bkgs.	\checkmark
$b\bar{b}\gamma\gamma$ systematics					
γ ID / γ	0.5%	1%	2%	Signals, MC bkgs.	×
$b\bar{b}\ell\ell + E_{\rm T}^{\rm miss}$ systematics					
Lepton ID / lepton	0.5%	1%	2%	Signals, MC bkgs.	×
Data-driven bkg. est.	-	1%	1%	V + jets	×
Data-driven bkg. est.	-	-	1%	$t\overline{t}$	×

- Following previous di-Higgs studies@FCC-hh
- Applied as rate systematics only, no shape effect

$\overline{bbll} + E_T^{miss}$: Results

- Higgs self-coupling modifier κ_{λ} interpretation
 - Parametrized dependence of σ (ggHH) on κ_{λ}
 - Inputs: $\kappa_{\lambda} = 1.0, 2.4, 3.0$
 - \circ $\;$ All other couplings fixed to SM $\;$
 - NLO cross-sections at 100 TeV, with *k*-factor independent of κ_{λ}
 - No Higgs BR dependance on κ_{λ} and uncertainties or other additional theory uncertainties
- Preliminary results for scenario II $\overline{bbll}+E_T^{miss}$
 - Neglecting V+jets and single top backgrounds

1 DNN performance

3 DNNs performances: ttH killer

3 DNNs performances: Mx > 350

Universität Hamburg

3 DNNs performances: Mx < 350

bbyy analysis: DNN input variables

- The number of jets (with no b tag requirement)
- The b tag of the leading and subleading jet;
- $p_T(j)/m(jj)$ of the leading and subleading jet.
- $p_T(jj)/m(jj)$ of the dijet object;
- **\square** $p_T(\gamma)/m(\gamma\gamma)$ of the leading and subleading photon;
- $p_T(\gamma\gamma)/m(\gamma\gamma)$ of the diphoton object;
- The scalar sum of the jet p_T ;
- The ΔR between the closest photon-jet pair;
- The ΔR between the other photon-jet pair;
- **The** $\Delta \phi$ and $\Delta \eta$ between the leading and subleading photon;
- The $\Delta \phi$ and $\Delta \eta$ between the leading and subleading jet;
- The $\Delta \phi$ and $\Delta \eta$ between the diphoton and the dijet object,
- The angle between the diphoton object and the beam axis in the dijet rest frame;
- The angle between the leading jet and the beam axis in the dijet rest frame;
- The angle between the leading photon and the beam axis in the diphoton rest frame;
- Number of leptons, i.e. muons and electrons
- \square p_T of muons and electrons

1.0

0.8

Signal kl=1.0

ttH

3.0 3.5 4.0

Signal kl=1.0

Signal kl=1.0 ttH

ggJets

res bkg

ttH

aqlets

res bkg

gglets

res bkg

Delphes parametrization update: m_{yy} resolution

Reco level resolution obtained using $HH \rightarrow \overline{b}byy$ sample

• More aggressive resolution for m_{yy} compared to the baseline scenario

Di-Higgs cross-section dependance on κ_{λ} in *pp*-collisions

Higgs self-coupling @ ILC

- Two production modes:
 - Higgsstrahlung, peaks ~500 GeV
 - WW-fusion, above ~1 TeV
 - \rightarrow need runs at both energies for maximum κ_{λ} precision

- Studied dominant channels 4b and bbWW
- Advantage of *ee*-collider: *ZHH* cross-section increases with κ_{λ} , hence better constraints at values $\kappa_{\lambda} > 1$ than *pp*-colliders