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Outline

The necessity of non-perturbative methods and the lattice.

Lattice evidence for the importance of center vortices.

The center-vortex approach to infrared Yang-Mills and QCD.

Wavefunctional for the Yang-Mills vacuum peaked at center vortices.
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The necessity of non-perturbative methods

Yang-Mills is strongly coupled in the infrared, a regime where many important physical
phenomena emerge.

The lattice is a very successful non-perturbative approach to QFT.

Can be thought of as a lab to probe non-perturbative phenomena which are not easily
accessible by experiments.
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Figure: The vertical dashed lines represent the experimental results, and the points with error bars are
the corresponding lattice results. Taken from PRL 92 (2004) 022001.
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Model building in the continuum

We use the lattice input to build models in the continuum to understand the properties of
the Yang-Mills vacuum.

Center vortices are particular field configurations which capture the main properties of
QCD in the infrared regime.
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Vortex-only ensembles capture the confining string tension (Faber et al (2001), Bali et al
(1994))

Figure: The static quark potential calculated on vortex-modified ensembles in pure Yang-Mills.
From Leinweber et. al (2022).
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Figure: The static quark potential calculated on vortex-modified ensembles with mπ = 156 MeV. From
Leinweber et. al (2022).
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Center vortices are essential for chiral symmetry breaking.

Figure: χSB order parameters 〈ψ̄ψ〉 vs. lattice bare quark mass, for the unmodified (plus sign),
center-projected (open square), and vortex-removed (multiplication sign) configurations in SU(2)
lattice gauge theory. From Alexandrou, de Forcrand and D’Elia (2000).
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Consequently, they are essential to generate the correct hadron mass spectrum.

Figure: Effective masses of the low-lying mesons (left) and baryons (right) at bare quark mass
mq = 38 MeV, with untouched and vortex-only ensembles.
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Figure: Effective masses of the low-lying mesons (left) and baryons (right) at bare quark mass mq = 38
MeV, with vortex-removed ensembles.
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Center-vortex approach to infrared Yang-Mills theory

Center-vortex approach to probe infrared properties of Yang-Mills in the continuum:
evaluate observables using ensembles of these field configurations

〈O〉 =

∫
DAO(A)e−SYM ≈

∫
[DA]vortices O(A)e−SYM .

Non-perturbative approach to Yang-Mills and QCD.
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Vortices in the continuum limit

The following gauge field represents a center-vortex in SU(2) YM theory, in 3 Euclidean
dimensions (Reinhardt, Engelhardt (1999))

Aµ = ∂µϕ
σ3

2
.
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Why is it a center-vortex? Because WC [Aµ] = (−1)L(C ,l), where l is the vortex
guiding-center.
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Center vortices in different dimensions

In 1 + 1 the center-vortices are zero-dimensional, and in 2 + 1 they are one-dimensional.

In 3 + 1 they are two-dimensional.

In any dimension,

WC [Avortex
µ ] = zL(C ,Σ) ,

where Σ is the vortex core (or guiding center), which is a point, closed loop, closed surface
in 2d , 3d , 4d respectively. L(C ,Σ) is the linking number between C and Σ.
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In four dimensions, vortices are two-dimensional objects

In the wavefunctional formalism, they are seen at a fixed time (Junior, Reinhardt & LEO, 2022)

David Rosa Junior 16 / 22



In four dimensions, vortices are two-dimensional objects

In the wavefunctional formalism, they are seen at a fixed time (Junior, Reinhardt & LEO, 2022)

David Rosa Junior 16 / 22



In four dimensions, vortices are two-dimensional objects

In the wavefunctional formalism, they are seen at a fixed time (Junior, Reinhardt & LEO, 2022)

David Rosa Junior 16 / 22



In four dimensions, vortices are two-dimensional objects

In the wavefunctional formalism, they are seen at a fixed time (Junior, Reinhardt & LEO, 2022)

David Rosa Junior 16 / 22



4d Mixed ensembles in the wavefunctional formalism

Elementary center-vortex loops carrying fundamental magnetic weights
β1. . . . , βN , with N-matching: a = 2πβ · T ∂iχ+ . . .

Ψ(A) =
∑
{γ}

ψ{γ} δ(A− a({γ})) , Ai (x) , x ∈ R3 .

The electric field (dual) representation

Ψ̃(E ) =

∫
[DA] e i

∫
d3x (E ,A)Ψ(A)

Ensemble integration → effective field representation (E = ∇× Λ)

Ψ̃(E ) =

∫
DΦ e−S[Φ,Λ] , |D(Λ)Φ|2 + m2Tr Φ†Φ + λTr (Φ†Φ)2 + det Φ + c.c.
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We also included chains → ϑTr(ΦTAΦ†TA).

Percolating phase: ψγ with negative tension, positive stiffness and repulsive interactions
→ m2 < 0.

We evaluated the Wilson loop average

〈WD(C )〉 , WD(C ) = exp

[
i

∮
C
A · dx

]
.

An area law compatible with asymptotic Casimir law was obtained, i.e.

σk = σk(N − k) .
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Center vortices and topological charge

The Pontryagin index of a gauge field is

Q =
1

16π2

∫
d4xTr(Fµν F̃

µν) .

Topological susceptibility of the vacuum:

χ =
〈Q2〉
V

.

Related to the mass of the η′ boson by means of the Witten-Veneziano mass formula

m2
η′ =

2Nf

f 2
π

χ .
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Center-vortex configurations generate topological charge when they contain intersections
or twisting

Figure: Intersection points (left) and writhing points (right). From Reinhardt (2002).

The topological charge calculated with vortex-removed ensembles is zero (Forcrand and
D’Elia (1999)).
Ongoing project: evaluate χ with the wavefunctional peaked at center vortices.
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Conclusions

We proposed a wavefunctional for the Yang-Mills vacuum peaked at center vortices

It is compatible with an area law for the Wilson loop.

Work in progress: evaluation of the topological susceptibility and of the ’t Hooft loop.
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Thank you!
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