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Beam-based studies of Non-Linear Errors in the LHC
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° Dodecapoles
o Decatetrapoles

— Important for future accelerators like HL-LHC and FCC
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Decapolar Studies
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Decapolar Studies
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® Large by at injection in main dipoles
® Current corrections based on magnetic measurements
® MCD Correctors every 2" dipole




Magnetic Model Discrepancy

0.280
0.2751
&0.270+
0.2651 —— Nominal Machine
- Nominal Model
0.260 I Measurement
—0.002 0.000 0.002
&

® Corrections of Q" based on magnetic measurements
® Discrepancies between model and measurements

o Off by factor 2, but why?




Possible sources

Is it coming from the measurement technique itself or errors?

1 1
Q) = Qo+ Q0+ 5Q"0* + Q" + -
this guy

® Magnetic model

® Correctors response

® Higher-order Dispersion

® Momentum compaction factor
® Coupling

— Need to do some more measurements to find out
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Checking the Correctors
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® Beam-based corrections applied on correctors
® Shift in @” almost identical for meas. and sim.

— Correct shift is always observed
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Checking the Correctors
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® Qctupolar and decapolar correctors turned off

® Model and measurements for Q

m

are still factor ~ 2 off

® Discrepancy still there despite various corrector configurations

— | to K, crosstalk and coupling ruled out
— Correctors do not cause the discrepancy
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Chromatic Amplitude Detuning
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e Different dependence on dispersion than Q”
® Factor ~ 2 compared to simulations again
® First time ever measured in the LHC

— Points to an error in our by model, in the arcs




Decay in Main Dipoles

® b, decay implemented in operation

® Computed from magnetic meas.

AbS [units]
s

® ), component constant in models

® b, decay not implemented

® Quite large and fast at injection
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Figure 31: Decay of integrated bs at injection (430 apertures) and the decay fit (black line).

— Decay is important to consider




Implementation of Decay
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® Average by decay substracted in simulations
® Most of the discrepancy is now explained

° For @” and Chromatic Ampdet.

— by discrepancy comes from our error model
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Resonance Driving Terms
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® Coefficient linked to a resonance amplitude
° Resonances : (j —k)Q, +(I—m)Q, =p ;
° Multipole of order n = n=j+k+1+m
® Example of fi504
° Excites resonance 1Q), — 4@,
° Measured for the first time at injection
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Turn-by-Turn Spectrum
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® Several lines are clearly visible

o AC-Dipoles tunes, due to transverse excitation
° Example of decapolar resonance at 40,
® Resonance Driving Terms are linked to line amplitude
® New collimation setup allowed for higher kicks




GUI for Online Measurements and Corrections

o) =0+ 0 (¥)+

A )

ac¢s> vaQz2B a¢r> daz=2m
] 0.325¢
0.280 o fit
— O fit
0275+ 0320 | Measurement
— 0315+
0270 3
0.310
0.265-
—_— W fit
— OB fit
0.305
0260 [ Measurement 3
-0.002  0.000 0.002 -0.002  0.000 0.002
5 5

® Developped a new tool for chromaticity
o Allows online analysis and corrections
® Also allows combined chromaticity and RDT correction for b, /b

— Online measurements and corrections are fast and efficient




Measurement and Corrections
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® Corrections based on a response matrix

° Retrieves the current needed to replicate measurement

® Simultaneous corrections of f,,0,, @” and chromatic amp.det.
® First correction of high-orders at injection




Lifetime Impact of Corrections
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® (Clear improvement of lifetime with correction
® And deterioration with opposite trim

— Gain of pilot lifetime at injection energy of ~ 3%




Other Sources for RDT?
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® Weird behaviour of the RDT

° Amplitude seemed to vary every year, even with same Q"
o Additional corrections of Q” increased it

— Corrections of Q” not implemented in 2022




Sextupolar and Octupolar Contributions
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— Feed-up from sextupoles and octupoles contribute to b; RDTs




RDT from Landau Octupoles
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® |andau Octupoles quite strong at injection energy

° RDT one order of magnitude stronger!




Landau Octupoles Impact on Lifetime
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® Artificially increased RDT to match expected octupolar impact

° " staying constant
o Lifetime got lowered by 10%

— Higher-order effects are important




Forced Dynamic Aperture
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® Corrections now implemented in operation
® Forced Dynamic Aperture clearly improved

— We can now kick higher with the AC-Dipole!
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Dodecapolar RDT f060
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® First measurement made possible this Run

o Thanks to new collimator sequence
° b, and by corrections improving forced DA
® Nice repeatability of measurements




Dodecapolar RDT f060
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— Our model is accurate for this dodecapolar RDT
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Chromaticity
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new!

® New collimation setup allowed us to increase momentum range
® Refined cleaning tune cleaning via GUI

— Clear effects of higher-order chromaticity
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Chromaticity
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Similar and repeatable measurements achieved

® Over 5 different corrector configurations
e With different optics and years appart
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Chromaticity
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® b, decay in main dipoles
has small impact

® Some missing sources?

— Our model differs only by 20%
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Conclusions

Progressed and achieved nice measurements of higher-order fields!

® Decapolar

° Improved our understanding of decapolar fields and our model
o Forced DA improved by novel corrections
° First measurements and corrections of Chromatic Detuning and RDTs

® Dodecapolar

° First measurement of f,5, and benchmark of model

® Decatetrapolar
o Chromaticity measurements allow to probe up to Decatetrapole

— Good first characterization of high orders in the LHC :)

High-Orders Field
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