High-Orders Fields in the LHC Measurement and Modelling

Maël Le Garrec CERN — BE-ABP-LNO

Thanks to the $\mathbf{O}\textsc{ptics}\xspace$ Measurements and $\mathbf{C}\textsc{orrections}\xspace$ Team at CERN

Plan

Outline

- **Decapolar Studies**
- **Dodecapolar Studies**
- Decatetrapoles
- Conclusions
- Acknowledgements

Outline

Beam-based studies of Non-Linear Errors in the LHC

- Focus on magnetic model
- Trying corrections
- Characterizing error sources
- Previous studies:
 - Sextupoles
 - Octupoles
- Challenging to go higher
 - Decapoles
 - Dodecapoles
 - Decatetrapoles

 \rightarrow Important for future accelerators like HL-LHC and FCC

Plan

Outline

Decapolar Studies

Magnetic Model Discrepancy Possible sources Checking the Correctors Chromatic Amplitude Detuning Decay in Main Dipoles Implementation of Decay Resonances

Dodecapolar Studies

Decatetrapoles

Conclusions

Acknowledgements

Decapolar Studies

- Large b_5 at injection in main dipoles
- Current corrections based on magnetic measurements
- *MCD* Correctors every 2nd dipole

Magnetic Model Discrepancy

- Corrections of Q''' based on magnetic measurements
- Discrepancies between model and measurements
 - o Off by factor 2, but why?

Possible sources

Is it coming from the measurement technique itself or errors?

$$Q(\delta) = Q_0 + Q'\delta + \frac{1}{2!}Q''\delta^2 + \underbrace{\frac{1}{3!}Q''\delta^3}_{\text{this gay}} + \cdots$$

- Magnetic model
- Correctors response
- Higher-order Dispersion
- Momentum compaction factor
- Coupling

\rightarrow Need to do some more measurements to find out

Checking the Correctors

Plane	$\Delta Q'''[10^6]$ Meas. Sim.	
B1 X Y	$\begin{array}{c} 2.3\pm0.1\\ \textbf{-1.5}\pm0.1\end{array}$	2.5 -1.4

- Beam-based corrections applied on correctors
- Shift in Q''' almost identical for meas. and sim.

 \rightarrow Correct shift is always observed

-

Checking the Correctors

- Octupolar and decapolar correctors turned off
- Model and measurements for Q''' are still factor pprox 2 off
- Discrepancy still there despite various corrector configurations
 - \rightarrow I to K, crosstalk and coupling ruled out \rightarrow Correctors do not cause the discrepancy

Chromatic Amplitude Detuning

- Different dependence on dispersion than Q^{'''}
- Factor ≈ 2 compared to simulations again
- First time ever measured in the LHC

 \rightarrow Points to an error in our b_5 model, in the arcs

Decay in Main Dipoles

Figure 31: Decay of integrated b5 at injection (430 apertures) and the decay fit (black line).

• b_3 decay implemented in operation

- Computed from magnetic meas.
- b_5 component constant in models
- b_5 decay *not* implemented
- Quite large and fast at injection

\rightarrow Decay is important to consider

Implementation of Decay

- Average b_5 decay substracted in simulations
- Most of the discrepancy is now explained
 - $^\circ\,$ For $Q^{\prime\prime\prime}$ and Chromatic Ampdet.

 $ightarrow b_5$ discrepancy comes from our error model

Resonance Driving Terms

- Coefficient linked to a resonance amplitude
 - $\circ \ \, {\rm Resonances}: \ (j-k)Q_x+(l-m)Q_y=p \quad ; \quad p\in \mathbb{N}$
 - $^{\circ}\;$ Multipole of order $n \rightarrow n = j + k + l + m$
- Example of f_{1004}
 - Excites resonance $1Q_x 4Q_y$
 - · Measured for the first time at injection

Turn-by-Turn Spectrum

- Several lines are clearly visible
 - AC-Dipoles tunes, due to transverse excitation
 - Example of decapolar resonance at $4Q_y$
- Resonance Driving Terms are linked to line amplitude
- New collimation setup allowed for higher kicks

GUI for Online Measurements and Corrections

- Developped a new tool for chromaticity
 - · Allows online analysis and corrections
- Also allows combined chromaticity and RDT correction for b_4/b_5

 \rightarrow Online measurements and corrections are fast and efficient

Measurement and Corrections

- Corrections based on a response matrix
 - Retrieves the current needed to replicate measurement
- Simultaneous corrections of f_{1004} , Q''' and chromatic amp.det.
- First correction of high-orders at injection

Lifetime Impact of Corrections

- Clear improvement of lifetime with correction
- And deterioration with opposite trim

 \rightarrow Gain of pilot lifetime at injection energy of $\approx 3\%$

Other Sources for RDT?

- Weird behaviour of the RDT
 - $\,\circ\,$ Amplitude seemed to vary every year, even with same $Q^{\prime\prime\prime}$
 - $^{\circ}\,$ Additional corrections of Q'' increased it

 \rightarrow Corrections of $Q^{\prime\prime\prime}$ not implemented in 2022

Sextupolar and Octupolar Contributions

Via higher-orders of the transfer map $e^{:h_1:}e^{:h_2:}=e^{:h:}$

$$\begin{split} h = & h_1 + h_2 & \Rightarrow 1^{\rm st} \text{ order} \\ & + \frac{1}{2} [h_1, h_2] & \Rightarrow 2^{\rm nd} \text{ order} \\ & + \frac{1}{12} [h_1, [h_1, h_2]] \\ & - \frac{1}{12} [h_2, [h_1, h_2]] & \Rightarrow 3^{\rm rd} \text{ order} \\ & + \cdots . \end{split}$$

- 1^{st} order \rightarrow decapoles
- 2^{nd} order \rightarrow sextupoles and octupoles
- $3^{\rm rd}$ order \rightarrow sextupoles together

 \rightarrow Feed-up from sextupoles and octupoles contribute to $b_5~{\rm RDTs}$

RDT from Landau Octupoles

- Landau Octupoles quite strong at injection energy
 - RDT one order of magnitude stronger!

Landau Octupoles Impact on Lifetime

- Artificially increased RDT to match expected octupolar impact
 - $\circ Q'''$ staying constant
 - $^\circ\,$ Lifetime got lowered by 10%
 - \rightarrow Higher-order effects are important

Forced Dynamic Aperture

- Corrections now implemented in operation
- Forced Dynamic Aperture clearly improved

 \rightarrow We can now kick higher with the AC-Dipole!

Plan

Outline

Decapolar Studies

$\begin{array}{c} \mbox{Dodecapolar Studies} \\ \mbox{Dodecapolar RDT } f_{0060} \end{array}$

Decatetrapoles

Conclusions

Acknowledgements

Dodecapolar RDT $f_{\rm 0060}$

- First measurement made possible this Run
 - Thanks to new collimator sequence
 - $^\circ~b_4$ and b_5 corrections improving forced DA
- Nice repeatability of measurements

Dodecapolar RDT f_{0060}

 \rightarrow Our model is accurate for this dodecapolar RDT

Plan

Outline

Decapolar Studies

Dodecapolar Studies

Decatetrapoles Chromaticity

Conclusions

Acknowledgements

2024-09-19

Chromaticity

- New collimation setup allowed us to increase momentum range
- Refined cleaning tune cleaning via GUI

 \rightarrow Clear effects of higher-order chromaticity

Chromaticity

Similar and repeatable measurements achieved

- Over 5 different corrector configurations
- With different optics and years appart

Chromaticity

- b₇ decay in main dipoles has small impact
- Some missing sources?

 \rightarrow Our model differs only by 20%

Plan

Outline

Decapolar Studies

Dodecapolar Studies

Decatetrapoles

Conclusions

Acknowledgements

Conclusions

Progressed and achieved nice measurements of higher-order fields!

Decapolar

- · Improved our understanding of decapolar fields and our model
- Forced DA improved by novel corrections
- · First measurements and corrections of Chromatic Detuning and RDTs
- Dodecapolar
 - $^\circ\,$ First measurement of f_{0060} and benchmark of model
- Decatetrapolar
 - · Chromaticity measurements allow to probe up to Decatetrapole

 \rightarrow Good first characterization of high orders in the LHC :)

Plan

Outline

Decapolar Studies

Dodecapolar Studies

Decatetrapoles

Conclusions

Acknowledgements

Acknowledgements

For all the help to achieve this work, thanks to:

- Ewen Maclean
- The OMC team
- Laurent Deniau

