Numerical integration of NNLO virtual corrections to triboson production: the Nf-part

—

Based on arXiv:2407.18051 in collaboration with Matilde Vicini

Dario Kermanschah CERN QCD Seminar, 30 September 2024

How to conquer multi-scale multi-loop calculations?

- Full two-loop amplitudes beyond 2 \rightarrow 3 massless particles unavailable
- Overwhelming complexity of IBP reduction & unknown Master Integrals
- NNLO calculations become analytically intractable... resort to numerical methods!

Why vector boson production?

- Uncharted territory: 3 massive bosons at two loops
- Fewer IR singularities: only ISR (no FSR)
- ATLAS and CMS become sensitive to triple Z / W production, test quartic gauge-boson couplings & lightquark Yukawa couplings, BSM...

Our approach for the two-loop virtual contribution: Local subtraction & direct numerical integration

finite remainder:
$$R^{(2)} = M^{(2)} - \frac{2\beta_0}{\epsilon} M^{(1)}$$

UV renorm.

hard scattering amplitude $M_{\rm hard}^{(2)} = M^{(2)}$ $C_{\rm IR\&UV}$ easy loops

local IR & UV

counterterms

- finite in D = 4 dimensions, no dim reg. ($\gamma^{5}...$)
- integrate numerically with Monte Carlo

loops ----

directly in momentum space

Feynman

diagrams

• no IBPs, no Master integrals, no sector decomposition

Anastasiou, Haindl, Karlen, Sterman, Venkata, Yang, Zeng [2403.13712,2212.12162, 2008.12293,1812.03753]

) $- \mathbf{Z}^{(1)} M^{(1)} - \mathbf{Z}^{(2)} M^{(0)}$

Catani IR poles

 $C_{IR\&UV}$ from local factorisation

renormalisation & factorisation scheme change

+ $C_{\text{IR&UV}}$ - $\frac{2\beta_0}{C} M^{(1)} - Z^{(1)}M^{(1)} - Z^{(2)}M^{(0)}$ calculate analytically in $D = 4 - 2\epsilon$ dimensions $= c_1 M_{\text{hard}}^{(1)} + c_0 M^{(0)}$

interfere with tree & integrate over phase space to get the virtual cross section: $\int d\Pi \sum_{hel} |M|^2$

$$M_{\rm hard} = M - C_{\rm UV\&IR}$$

one loop

Anastasiou, Haindl, Sterman, Yang, Zeng [2008.12293, 2212.12162], DK, Vicini [2407.18051]

scheme change

$C_{\text{IR&UV}} - \text{UV}$ renorm. – IR fact.

$$M_{\rm hard} = M - C_{\rm UV\&IR}$$

one loop

Anastasiou, Haindl, Sterman, Yang, Zeng [2008.12293, 2212.12162], DK, Vicini [2407.18051]

scheme change

$C_{\text{IR&UV}}$ – UV renorm. – IR fact.

$$M_{\rm hard} = M - C_{\rm UV\&IR}$$

one loop

scheme change

$C_{\text{IR&UV}}$ – UV renorm. – IR fact.

$$M_{\rm hard} = M - C_{\rm UV\&IR}$$

$$M_{\rm hard} = M - C_{\rm UV\&IR}$$

$$M_{\rm hard} = M - C_{\rm UV\&IR}$$

$$M_{\rm hard} = M - C_{\rm UV\&IR}$$

one loop

two loop Nf

$$scheme change
C_{IR&UV} - UV renorm. - IR fact
one loop
C_{IR}^{(1)} + C_{UV}^{(1)} - Z^{(1)}M^{(1)}
= f_0^{(1)} \left[\ln\left(\frac{\mu^2}{s}\right), \ln\left(\frac{\mu^2}{M^2}\right) \right] \widetilde{M}^{(1)}$$
individually finite in 4 dimension

$$two loop Nf$$

$$C_{IR&UV}^{(2,N_f)} - \frac{2\beta_0}{e}M^{(1)} - Z^{(2,N_f)}M^{(0)}$$

$$= f_1^{(2,N_f)} \left[\ln\left(\frac{\mu^2}{M^2}\right) \right] M_{hard}^{(1)}$$

$$+ f_0^{(2,N_f)} \left[\ln\left(\frac{\mu^2}{s}\right), \ln\left(\frac{\mu^2}{M^2}\right) \right] \widetilde{M}^{(1)}$$

Local singularities of finite loop integrals

4 poles in the integration domain

causal prescription

implement causal prescription for numerical integration

 \rightarrow analytic integration over k^0

Loop integrals are rational functions in the energy component of the loop momentum \rightarrow integrate using the residue theorem: from D to D-1 integration dimensions per loop

Catani, Rodrigo et al. [0804.3170], ETHZ [1906.06138], Mainz [1902.02135], Valencia [2001.03564, 2010.12971] Loop-Tree Duality

compact expression but problematic spurious singularities and derivatives for raised propagators

Time-Ordered Perturbation Theory still some spurious singularities and more terms

Capatti [2211.09653] **Cross-Free Family representation** no spurious singularities

+ many others ...

ETHZ [2009.05509], Mainz [2208.01060], Stony Brook [2309.13023], Valencia [2006.11217, 2112.09028, 2103.09237, 2102.05062]

Loop integrals are rational functions in the energy component of the loop momentum \rightarrow integrate using the residue theorem: from D to D-1 integration dimensions per loop

Catani, Rodrigo et al. [0804.3170], ETHZ [1906.06138], Mainz [1902.02135], Valencia [2001.03564, 2010.12971] Loop-Tree Duality

compact expression but problematic spurious singularities and derivatives for raised propagators

Time-Ordered Perturbation Theory

Capatti [2211.09653] **Cross-Free Family representation** no spurious singularities

energy
energy

Singular surfaces in Loop-Tree Duality

$$\sim \lim_{e \to 0} \int d^{3}\vec{k} \begin{cases} \frac{1}{2E_{3}} \frac{1}{E_{3} - E_{1} + p_{1}^{0}} \frac{1}{E_{3} + E_{1} + p_{1}^{0}} \\ + \frac{1}{E_{1} - E_{3} - p_{1}} \frac{1}{E_{1} + E_{3} - p_{1}} \frac{1}{2E_{1}} \frac{1}{E_{1} - E_{1}} \\ + \frac{1}{E_{2} - E_{3} + p_{2}^{0}} \frac{1}{E_{2} + E_{3} + p_{2}^{0}} \frac{1}{E_{2} - E_{1}} \end{cases}$$

spurious singularities Hyperboloid

may cause numerical instabilities not present in (P)TOPT, causal LTD, CFF

threshold singularities

Ellipsoid

dictated by unitarity regularised by causality

Threshold singularities

- causal prescription
- implement causal prescription for numerical integration
 - \rightarrow Same problems? Yes but fewer integration dimensions & fewer integrand singularities in compact region!

$$\vec{q}_i^2 + m_i$$

subtraction

subtraction

Contour deformation vs. subtraction of Σ -

Threshold subtraction is stable for high multiplicities of external legs

Topology

1L30P.IV

Kin.

N_{E}	N _G	N_{G}^{\max}	NP	Phase	Exp.	Reference	Numerical	Δ $[\sigma]$	Δ [%]
5	1	1	10 ⁹	Re	-02	-1.007398	-1.007449 +/- 0.001467	0.035	0.005
			10 ⁹	Im		3.175180	3.175183 +/- 0.000085	0.030	8e-05
6	1	1	10 ⁹	Re	-12	-4.166377	-4.165527 +/- 0.006697	0.127	0.020
			10 ⁹	Im		3.413930	3.413917 +/- 0.000075	0.182	4e-04
408	15	354	10 ⁹	Re	-09	-2.991654	-2.984733 +/- 0.026977	0.257	0.231
			10 ⁹	Im		-0.000000	-0.000001 +/- 0.003831	3e-04	
408	15	354	10 ⁹	Re	-07	-1.757748	-1.757913 +/- 0.002169	0.076	0.009
			10 ⁹	Im		-0.000000	0.000001 +/- 0.000199	0.007	

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_{i} \mathcal{I}}{|\mathbf{k}| - k_{i}(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_{i} \text{ threshold counterterm}$

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

well suited for numerical integration!

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

for NLO and NNLO Nf-part we will only need the dispersive part!

$$\int d\Pi d^{3}\vec{k} d^{3}\vec{l} \sum_{\text{hel.}} 2 \operatorname{Re} \left[\underbrace{\$}_{\text{hel.}} \underbrace$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \rightarrow \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n} \mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1} \hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I}$$

$$\frac{1}{x - x_0 + i\epsilon} = PV \frac{1}{x - x_0} - i\pi\delta(x_0)$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \rightarrow \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_{i} \mathcal{I}}{|\mathbf{k}| - k_{i}(\hat{\mathbf{k}}) - i\epsilon} \rightarrow \operatorname{CT}_{i}$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_{i} \mathcal{I}}{|\mathbf{k}| - k_{i}(\hat{\mathbf{k}}) - i\epsilon} \rightarrow \operatorname{CT}_{i}$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_{i} \mathcal{I}}{|\mathbf{k}| - k_{i}(\hat{\mathbf{k}}) - i\epsilon} \rightarrow \operatorname{CT}_{i}$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_{i} \mathcal{I}}{|\mathbf{k}| - k_{i}(\hat{\mathbf{k}}) - i\epsilon} \rightarrow \operatorname{CT}_{i}$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

Subtraction of threshold singularities

around a threshold the integrand behaves as $\mathcal{I} \sim \frac{\operatorname{Res}_i \mathcal{I}}{|\mathbf{k}| - k_i(\hat{\mathbf{k}}) - i\epsilon} \to \operatorname{CT}_i$ threshold counterterm

$$\operatorname{Re} I = \int \mathrm{d}^{3n} \mathbf{k} \left(\mathscr{I} - \sum_{i} \operatorname{CT}_{i} \right)$$

dispersive part

$$\int d^{3n}\mathbf{k} \operatorname{CT}_{i} = i\pi \int d^{3n-1}\hat{\mathbf{k}} \operatorname{Res}_{i} \mathscr{I} = \begin{array}{c} \overleftarrow{i} & \overleftarrow{i} & \text{phoses} \\ \overleftarrow{i} & \overleftarrow{i} & \text{spin} \\ & & \text{int} \end{array}$$

$$\operatorname{Im} I = \pi \int d^{3n-1} \hat{\mathbf{k}} \sum_{i} \operatorname{Res}_{i} \mathscr{I}$$

 $\gamma^*\gamma^*$ $q\bar{q} \rightarrow q$

 $q\bar{q} \to \gamma^* \gamma^* \gamma^*$

corresponding Cutkosky cuts

14

same pipeline & same computer with 24 cores

NLO and NNLO-Nf virtual cross sections summed over helicities and convoluted with PDFs

		Order	Result [pb]	Δ [$\%$]	total time [#]	#potential for optim
	$nn \rightarrow nn$	NLO	5.2851 ± 0.0164 e-01	0.3	10 min	NLO in BLHA NNLO-Nf in MS NLO cross che interferences with OpenLoop and cross secti with MadGraph
masses?	$PP \rightarrow \gamma \gamma$	NNLO-Nf	-6.1475 ± 0.0349 e-02	0.6	1 h 30 min	
no prob!*	$pp \rightarrow \gamma^* \gamma^*$	NLO	4.3172 ± 0.0089 e-01	0.2	2 min	
		NNLO-Nf	-3.6943 ± 0.0322 e-02	0.9	40 min	
	$p_d p_d \rightarrow ZZ$	NLO	7.0067 ± 0.0159 e-01	0.2	4 min	
		NNLO-Nf	-5.9363 ± 0.0520 e-02	0.9	1 h 30 min	in agreement w FivePoint Amplitudes- Abreu, De Laur
	$pp \rightarrow \gamma \gamma \gamma$	NLO	1.4874 ± 0.0140 e-04	0.9	2 h 30 min	
masses?		NNLO-Nf	-2.5460 ± 0.0237 e-05	0.9	1 day	
no prob!*	$pp \rightarrow \gamma^* \gamma^* \gamma^*$	NLO	1.4692 ± 0.0144 e-04	1.0	2h 45 min	Sotnikov [2305
		NNLO-Nf	-1.4301 ± 0.0137 e-05	1.0	4 days	
	$p_d p_d \rightarrow Z \gamma_1^* \gamma_2^*$	NLO	2.4600 ± 0.0210 e-04	0.9	1 day 12 h	×3! new!
		NNLO-Nf	-2.5301 ± 0.0229 e-05	0.9	1 month	

*additional thresholds have to be considered

DK, Matilde Vicini [2407.18051]

numerical integration over loop & phase space

Summary & Outlook

Local IR factorisation & UV renormalisation

flexible and robust framework suited for automation

- apply these techniques to the full NNLO virtual contribution
 - next: other fermion loop contributions
- combine with real radiation
- processes with colorful final state

Minimizer Minimizer Market Section Interview Section Interview Contraction Interview Contribution to NNLO virtual cross section for 3 massive vector boson production If First NNLO calculation for the LHC using numerical integration over loop & phase space

> Analytic loop energy integration LTD, CFF, TOPT, ...

Threshold subtraction

local IR & UV CTs

Anastasiou, Haindl, Karlen, Sterman, Venkata, Yang, Zeng [2403.13712, 2008.12293]

Threshold CTs DK, Vicini [2407.21511]

