Rivet tutorial

Andy Buckley et al

LPCC Summer Institute Rivet tutorial, 2011-08-09

Contents

- Introduction
- 2 First Rivet runs
- 3 Writing a first analysis
- Writing a *data* analysis

Introduction

Session details

Today is not a solid day of Rivet tutorials! (Phew)

10.00-10.30: arrival, setup, technical troubleshooting...coffee?

10.30-12.30: introducing Rivet, querying Rivet analyses, running pre-built analyses, writing a simple pure-MC analysis.

12.30-14.00: LUNCH

14.00-16.00: writing more complex analyses, analyses with experimental reference data. Troubleshooting.

If you already know the morning contents, or are satisfied without knowing the afternoon stuff, drop in and out as suits.

This is a hands-on tutorial, and we want it to be practically useful: take this opportunity to start implementing something that you *want*. For specific questions to your problems, ask one of the helpers.

What is Rivet?

Rivet is a generator-agnostic validation system for MC generators.

More simply, it's a tool to produce physics plots from an MC generator code which can produce HepMC events. All the "major" generators can do this one way or another: C++ Pythia 8, Sherpa, Herwig++ out of the box, Fortran PYTHIA 6, HERWIG+JIMMY, etc. via AGILe.

This is useful for validating generators – only need to write the analysis once and it can be used to validate and compare every generator that should be able to simulate it.

Also useful as an input to MC tuning, model development, BSM studies, . . .

Some more on Rivet's design

MC analysis system operating on HepMC events. Intentionally ignorant of what generator produced the events it sees.

Emphasis on not messing with the MC implementation details: actually reconstruct bosons, don't trace back partons, etc. Life is eventually simpler this way: really.

Lots of standard analyses built in, including key ones for pQCD and MPI model testing. New analyses can be picked up at runtime: nice API with lots of tools to make this as simple and pleasant as we can. Computations automatically cached. Histograms automatically synchronised. Satisfaction automatically guaranteed...

Experimentalists: please write Rivet analyses of your analysis and contribute them! An excellent way to make your data *really* useful.

Latest version is 1.6.0.

Setup

Rivet docs: online at http://projects.hepforge.org/rivet/ – PDF manual, HTML list of existing analyses, and Doxygen.

Log in to lxplus.cern.ch or use the Rivet VM. On lxplus, if you're not in a bash shell (echo \$SHELL), then run bash to make life more pleasant: the Rivet toolkit provides contextual command line completion with bash.

On lxplus: source ~abuckley/public/setupRivetProf.sh

Test commands:

- ▶ rivet --help
- ▶ agile-runmc --help

First Rivet runs

Viewing available analyses

Rivet knows all sorts of details about its analyses!

► List available analyses: rivet --list-analyses

► List available analyses with a little more detail: rivet --list-analyses -v

► List ATLAS analyses with a little more detail: rivet --list-analyses -v ATLAS_

► Show some pure-MC analyses' full details: rivet --show-analysis MC_

The PDF and HTML documentation is also built from this info, so is always synchronised.

The analysis metadata is provided via the analysis API and usually read from an .info file which accompanies the analysis.

Running a simple analysis (standalone)

For simplicity, we get the events from generator to Rivet by writing to a filesystem pipe. NB. This has to live in a non-AFS directory!

On lxplus: mkfifo /tmp/\$USER/hepmc.fifo

We're going to use AGILe to run PYTHIA 6 for demonstration – use the same or run any other generator that you like with HepMC output going to the FIFO:

```
agile-runmc Pythia6:425 --beams=LHC:7000 -n 2000 -o /tmp/$USER/hepmc.fifo &
```

Now attach Rivet to the other end of the pipe: rivet -a MC_GENERIC /tmp/\$USER/hepmc.fifo

Tada! You can use multiple analyses at once, change the output file, etc.: see rivet --help

Feeding LHEF events into Rivet

Lots of you are fixed-order specialists, and your codes output LHEF events rather than HepMC. Of course, IR-unsafe quantities won't make much sense, but no reason to ban you from making plots!

At Les Houches this year I made a mini filter program which will convert LHEF files or streams to HepMC ones: http://svn.hepforge.org/rivet/contrib/lhef2hepmc/

Use it like this:

```
./lhef2hepmc fifo.lhef fifo.hepmc
Or
./lhef2hepmc fifo.lhef - | rivet
```

Maybe some help will be needed with building this program – it's not an official part of Rivet so you have to download and build it by hand. Let us know if you need a hand.

Plotting

Sorry, experimentalists: no ROOT!

Well, you can convert the Rivet output with the aida2root script...

For now we are using the LWH implementation of the AIDA interfaces. The plots are written out as DataPointSet objects in AIDA XML format. A histogramming upgrade is underway!

Plotting is pretty easy, though: rivet-mkhtml Rivet.aida or, if you want complete control: compare-histos Rivet.aida make-plots *.dat

Then view with a web browser/file browser/evince/gv/xpdf...A --help option is available for all Rivet scripts.

Running a data analysis

We're going to use the ATLAS 900 GeV/7 TeV min bias analysis: rivet --show-analysis ATLAS_2010_S8918562

Note that tab completion should work on rivet options and analysis names.

Now to run it:

agile-runmc command as before, but with --beams=LHC:900 rivet -a ATLAS_2010_S8918562 /tmp/\$USER/hepmc.fifo

And plot, much as before:

rivet-mkhtml -t "ATLAS min bias at 900 GeV" Rivet.aida
Or
compare-histos Rivet.aida
make-plots --pdfpnq ATLAS*.dat

Writing a first analysis

Writing an analysis

Writing an analysis is of course more involved than just running rivet! However, the C++ API is intended to be friendly: most analyses are quite short and simple because the bulk of the computation is in the library.

An example is usually the best instruction: take a look at /afs/cern.ch/sw/lcg/external/MCGenerators/rivet/

1.6.0/share/src/Analyses/MC_GENERIC.cc (or the same via http://svn.hepforge.org/rivet/trunk)

Things to note:

- ► Analyses are classes and inherit from Rivet::Analysis
- Usual init/execute/finalize-type event loop structure (certainly familiar from experimental frameworks)
- ▶ Weird *projection* things in init and analyze
- ► *Mostly* normal-looking everything else

Projections – registration

Major idea: **projections**. These are where the computational meat of Rivet resides. They are just observable calculators: given an **Event** object, they *project* out physical observables. They also automatically cache themselves, to avoid recomputation: this leads to the most unintuitive code structures in Rivet.

They are *registered* with a name in the **init** method:

```
void init() {
    ...
    const SomeProjection sp(foo, bar);
    addProjection(sp, "MySP");
    ...
}
```

Projections – applying

Projections were registered with a name...they are then applied to the current event, also by name:

```
void analyze(const Event& evt) {
    ...
    const BaseSomeProjection& mysp =
        applyProjection<SomeProjectionBase>(evt, "MySP");
    mysp.foo()
    ...
}
```

We prefer to get a handle to the applied projection as a const reference to avoid unnecessary copying.

It can then be queried about the things it has computed. Projections have different abilities and interfaces: check the Doxygen on the Rivet website, e.g.

http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Final state projections

Rivet is mildly obsessive about only calculating things from final state objects. Accordingly, a *very* important set of projections is those used to extract final state particles: these all inherit from FinalState.

- ► The FinalState projection finds all final state particles in a given η range, with a given p_T cutoff.
- ► Subclasses ChargedFinalState and NeutralFinalState have the predictable effect!
- ▶ IdentifiedFinalState can be used to find particular particle species.
- ▶ VetoedFinalState finds particles *other* than specified.
- ▶ **VisibleFinalState** excludes invisible particles like neutrinos, LSP, etc.

Most FSPs can take another FSP as a constructor argument and augment it. Future extension plans involve momentum selector objects, cf. FastJet 3.

Using FSPs to get final state particles

```
void analyze(const Event& evt) {
    ...
    const FinalState& cfs =
        applyProjection<FinalState>(event, "ChgdFS");
    MSG_INFO("Total charged mult. = " << cfs.size());
    foreach (const Particle& p, cfs.particles()) {
        const double eta = p.momentum().eta();
        MSG_DEBUG("Particle eta = " << eta);
    }
    ...
}</pre>
```

Note the lovely foreach macro – from Boost. We are very into the "make simple things simple" philosophy. Please use foreach when appropriate in any code that you contribute to Rivet.

Physics vectors

Rivet uses its own physics vectors rather than CLHEP. They are a little nicer to use, but basically familiar. As usual, check Doxygen: http://projects.hepforge.org/rivet/code/dev/

Particle and Jet both have a momentum () method which returns a FourMomentum.

Some FourMomentum methods: eta(), pT(), phi(), rapidity(), E(), px() etc., mass(). Hopefully intuitive!

Histogramming

AIDA has Histogram1D and Profile1D histograms similar to the core TH1D and TProfile in ROOT.

Histos can be booked via helper methods on the Analysis base class, which register the histograms at an appropriate path for their parent analysis, e.g. bookHistogram1D("thisname", 50, 0, 100). They can also be booked via a vector of bin edges or autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for use in the analyze method. There are scale() and normalize() methods for use in finalize.

The fill weight is important! Generators are often run with some kinematic enhancement which has to be offset with a reduced weight. Use evt.weight(). Future versions will implicitly use weights vectors.

A first analysis

Let's start with a simple "min bias" type of analysis, just plotting some simple particle properties like η , p_T , ϕ , etc. (... mean p_T vs. n_{ch} if you're feeling confident!)

To get an analysis template, which you can fill in with an FS projection and a particle loop, run rivet-mkanalysis my_test_analysis – this will make the required files.

Once you've filled it in, you can either compile directly with g++, using the rivet-config script as a compile flag helper, or – more helpfully – run

rivet-buildplugin RivetMyTest.so MY_TEST_ANALYSIS.cc In this setup, where we're using the 32 bit Rivet on a 64 bit system, add -m32

To run, first export RIVET_ANALYSIS_PATH=\$PWD, then run rivet as before.

Writing a data analysis

Starting a data analysis

We'll use the ATLAS 2010 W+jets analysis as an example. Feel free to implement something else: we'll try to troubleshoot.

The SPIRES key for this ATLAS analysis is 8919674 (try "key 8919674" in the SPIRES search box) and it was published in 2010, so in the standard Rivet naming convention it is called ATLAS_2010_S8919674.

There is reference data for this analysis in HepData: running rivet --show-analysis ATLAS_2010_S8919674 supplies this URL: http://hepdata.cedar.ac.uk/view/irn8919674

rivet-mkanalysis ATLAS_2010_S8919674 will download this ref data. NB. the jet multiplicity plots are not output correctly: HepData needs some improvements! Check the .info and .aida files: use aida2flat ATLAS_2010_S8919674.aida | less

The histogram names in this data file can be used for *histogram autobooking*.

Histogram autobooking

The final framework feature to introduce is histogram autobooking. This is a means for getting your Rivet histograms binned with the same bin edges as used in the experimental data that you'll be comparing to.

To use autobooking, just call the booking helper function with only the histogram name (check that this matches the name in the reference .aida file), e.g.

```
_hist1 = bookHistogram1D("d01-x01-y01")
```

The "d", "x" and "y" terms are the indices of the HepData dataset, *x*-axis, and *y*-axis for this histogram in this paper.

A neater form of the helper function is available and should be used for histogram names in this format:

```
_hist1 = bookHistogram1D(1, 1, 1)
```

That's it! If you need the bin edges without booking a persistent histogram (e.g. for booking a temporary LWH histogram), use binEdges (name) Or binEdges (d, x, y).

Jets (1)

There are many more projections, but one more important set which we'd like to dwell on is those to construct jets. Jetalg is the main projection interface for doing this, but almost all jets are actually constructed with FastJet, via the explicit FastJets projection.

The FastJets constructor defines the input particles (via a FinalState), as well as the jet algorithm and its parameters:

```
const FinalState fs(-3.2, 3.2);
addProjection(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6);
fj.useInvisibles();
addProjection(fj, "Jets");
```

Remember to #include "Rivet/Projections/FastJets.hh"

Jets (2)

Then get the jets from the jet projection, and loop over them in decreasing p_T order:

```
const Jets jets =
  applyProjection<JetAlg>(evt, "Jets").jetsByPt(20*GeV);
foreach (const Jet& j, jets) {
  foreach (const Particle& p, j.particles()) {
    const double dr =
       deltaR(j.momentum(), p.momentum());
  }
}
```

Check out the Rivet/Math/MathUtils.hh header for more handy functions like deltaR.

UnstableFinalState

The UnstableFinalState projection fetches decayed-but-physical particles (mostly hadrons) from the event record. The HepMC standard declares how these are to be indicated, so the results are reliable and physically safe:

```
const UnstableFinalState ufs(2.5, 6.0);
addProjection(ufs, "UFS");
...
const FinalState& ufs =
   applyProjection<FinalState>(evt, "UFS");
foreach (const Particle& p, j.particles()) {
   const int pid = p.pdgId();
   if (PID::hasBottom(pid)) num_b += 1;
   ...
}
```

HepPDT-type functions are defined in the PID namespace in the Rivet/Tools/ParticleIdUtils.hh.

THE END