
Manasvi Goyal 1,2, Jim Pivarski 2,Ianna Osborne 2

Extending Awkward
Functions to GPU

1 Harvard University 2 Princeton University

Support for this work was provided by NSF cooperative agreements OAC-1836650
and PHY-2323298 (IRIS-HEP) and OAC-2103945 (Awkward Array).

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1836650
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2323298
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2103945

Extending Awkward Functions to GPU - Manasvi Goyal 2

Implementing CUDA Kernels
● Infrastructure connecting CUDA kernels to Awkward operations already set up.

● CuPy is used to handle the higher level functions.

● Removed obsolete kernels leftover from Awkward 1.x.

● Overall 144 CPU kernels.

● 42 of the embarrassingly parallel kernels already automatically converted.

● Convert remaining trickier 102 CPU-bound algorithms into CUDA algorithms.

● Fixing errors in existing CUDA kernels.

Extending Awkward Functions to GPU - Manasvi Goyal 3

Awkward 2.x Architecture
● Due to this, awkward has no direct dependency on cuda

● Introduces an indirection as we move from the upper to the lower layers.

● Awkward functions can be used on GPU with just pip install awkward

Extending Awkward Functions to GPU - Manasvi Goyal 4

Categorizing CUDA Kernels

Extending Awkward Functions to GPU - Manasvi Goyal 5

Reducer Kernels - Naive Approach
● Assigns one thread to

each segment.

● Creates load imbalance.

● Each lane in a warp must
wait for the entire warp to
finish before returning.

● Threads assigned to long
segments stall neighboring
threads.

Extending Awkward Functions to GPU - Manasvi Goyal 6

Reducer Kernels - Load Balanced Approach
● Assign a fixed number of elements to

each thread and sequentially accumulate
consecutive elements.

● Store partial reduction as carry-out values
when the last element of a segment is
encountered and clear the accumulator.

● Cooperatively reduce the carry-out values
and add them in the partial reductions.

Extending Awkward Functions to GPU - Manasvi Goyal 7

Modified Hillis-Steele Algorithm

Extending Awkward Functions to GPU - Manasvi Goyal 8

Modified Hillis-Steele Example

Extending Awkward Functions to GPU - Manasvi Goyal 9

Across Block Boundary
● Only combine pairs in the same event by checking parents

● Take the last value in each event.

Extending Awkward Functions to GPU - Manasvi Goyal 10

Awkward Functions : CPU vs CUDA Backend

depth1 = ak.to_backend(depth1, "cpu")

ak.sum(depth1, axis=-1).to_list()
[3, 0, 12]

ak.prod(depth1, axis=-1).to_list()
[0, 1, 60]

ak.max(depth1, axis=-1).to_list()
[2, None, 5]

CPU CUDA

array = np.array([0, 1, 2, 3, 4, 5], dtype=np.int64)
content = ak.contents.NumpyArray(array)
offsets = ak.index.Index64(np.array([0, 3, 3, 6], dtype=np.int64))
depth1 = ak.contents.ListOffsetArray(offsets, content)

depth1 = ak.to_backend(depth1, "cuda")

ak.sum(depth1, axis=-1).to_list()
[3, 0, 12]

ak.prod(depth1, axis=-1).to_list()
[0, 1, 60]

ak.max(depth1, axis=-1).to_list()
[2, None, 5]

Extending Awkward Functions to GPU - Manasvi Goyal 11

Testing of Kernels
● Modifying Python test generation scripts

○ To add custom unit tests in Python generated from a JSON file of test cases.

○ To fix generation of tests for kernels containing pointer-to-pointer.

● Adding integration tests for each Awkward function on the CUDA backend.

def test_0115_generic_reducer_operation_count_max_1():
 content = ak.contents.NumpyArray(
 np.array([1.1, 2.2, 3.3, 0.0, 2.2, 0.0, 0.0, 2.2, 0.0, 4.4])
)
 offsets = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64))
 cpu_depth1 = ak.contents.ListOffsetArray(offsets3, content2)
 cuda_depth1 = ak.to_backend(cpu_depth1, "cuda", highlevel=False)

 assert to_list(ak.max(cpu_depth1, -1, highlevel=False)) == [3.3, 2.2, 4.4]
 assert to_list(ak.max(cuda_depth1, -1, highlevel=False)) == [3.3, 2.2, 4.4]

Extending Awkward Functions to GPU - Manasvi Goyal 12

Miscellaneous Tasks
● Adding kernel specifications of remaining Python kernels.

● Fixed some CPU kernels issues (memory access, nomenclature etc.)

● Adding some missing kernels for boolean type.

● Removing obsolete functions and dead code.

Extending Awkward Functions to GPU - Manasvi Goyal 13

Summary
● Almost all major CUDA kernels implemented.

● Enhanced test coverage for CPU, CUDA and Python kernels.

● Users can now use Awkward functions in GPU to do their analysis.

