CEKW
\

Computational upgrades to the high energy
physics analysis pipeline for future
LHC/HL-LHC runs

Saransh Chopra (University College London)
Supervisor: Dr. Jim Pivarski (Princeton University)

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

CE?W
\

/7S

Enabling auto-differentiation for the
Scikit-HEP ecosystem

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Motivation
e Physicists require tuning of hyperparameters in their analysis
pipeline, and using any arbitrary function as a loss function in .
the middle of the pipeline is sometimes required. .
e Each part of the pipeline must be individually differentiable to

allow picking this loss function in the middle of the pipeline
efficiently.

e Arreally nice resource | found on this was Nathan Simpson'’s
thesis with IRIS-HEP - Data Analysis in High-Energy Physics
as a Differentiable Program.

e This thesis resulted in making the statistical part of the l d 227
pipeline differentiable, including a few common operations re oxe ¢

like cut - gradhep/neos, gradhep/relaxed.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

https://cds.cern.ch/record/2846434?ln=en
https://cds.cern.ch/record/2846434?ln=en
https://github.com/gradhep/neos
https://github.com/gradhep/relaxed

Motivation

e Awkward’s JAX backend existed, but it had some known

bugs that was blocking the integration of autodiff in Analysis
Grand Challenge.

e The development of the JAX backend had stalled recently to
prioritise other work.

Computational upgrades to the high energy physics analysis pipeline

Saransh Chopra

C\ERN
/7S

Working

Interoperability

handle awkward between Awkward
Awkward Array = flatten % NumPy Array == slices, ufuncs, =» Arrays, Awkward ==unflatten=» Awkward Array
and behaviors operations and JAX's

DeviceArrays

Lb Differentiable

contents["y"]

ak.Array
f'-------____—-"__-_'-“—_“_'"-"-""-___-___""__"_"__“_“_—-_"___--____"-___"-__"_---_‘I
E contents["x"] N A .
H content tinRy/Aray i
i | ListOffsetArray RecordArray i
: content -
! offsets ListOffsetArray NumpyArray -
: i
I 1
1 1

Ux": 1.1, “y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
"x": 4.4, "y": [3, 21}, {"x": 5.5, "y": [3]}]

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

(%ERPJ
/7S

Results

import jax

import awkward as ak
import numba

import numpy as np

ak.jax.register_and_check()

def f(x):
return np.power(x[[2, 2, @], ::-1], 3)

primals = ak.Array([[1.0, 2, 31, [1, [5, 611, backend="jax")
tangents = ak.Array([[0.0, 1, @], [], [0, @]], backend="jax")

val, grad = jax.jvp(f, (primals,), (tangents,))

val, grad

(<Array [[216.0, 125.0]1, [...], [27.0, 8.0, 1.0]] type='3 x var x float32's,
<Array [[0.0, 0.0]1, [0.0, ...], [0.0, 12.0, 0.0]] type='3 % var x float32'>)

print(jax.grad(np.sum)(primals))

[[1.0, 1.0, 1.0]1, []1, [1.0, 1.0]]

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

More results

import jax
import awkward as ak

ak.jax.register_and_check()
a = ak.Array([[1.0, 2, 3], [5, 6]], backend="jax")

def f(x):
return ak.mean(ak.sum(x) * x)

(Array(57.8, dtype=float32),
<Array [[6.8, 6.8, 6.8], [6.8, 6.8]] type='2 % var x float32'>)

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

More results (with numba)

behavior = {} @ak.mixin_class(behavior)
class SomeClass:
@property
def some_kernel(self):
return _some_kernel(self.x, self.y)

input_arr = ak.Array([1.0], backend="jax")

@numba.vectorize(
[ak.behavior.update(behavior)
numba. float32(numba.float32, numba.float32),))))
numba. float64 (numba. float64, numba.float64), arr = ak.zip({"x": input_arr, "y": input_arr}, with_name="SomeClass")
)] arr.some_kernel
def _some_kernel(x, y): [2.0]

return x *x X +y xy type: 1 x float32

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

More results (with coffea)

ak.behavior.update(candidate.behavior)

ttbar_file = "https://github.com/scikit-hep/scikit-hep-testdata/"\
"raw/main/src/skhep_testdata/data/nanoA0OD_2015_CMS_Open_Data_ttbar.root"

with uproot.open(ttbar_file) as f:
arr = f["Events"].arrays(["Electron_pt", "Electron_eta", "Electron_phi",
"Electron_mass", "Electron_charge"])

px = arr.Electron_pt * np.cos(arr.Electron_phi)
py = arr.Electron_pt * np.sin(arr.Electron_phi)
pz = arr.Electron_pt * np.sinh(arr.Electron_eta)
E = np.sqrt(arr.Electron_mass**2 + px*x2 + pyxx2 + pz¥k2)

evtfilter = ak.num(arr["Electron_pt"]) >= 2

els = ak.zip({"pt": arr.Electron_pt, "eta": arr.Electron_eta, "phi": arr.Electron_phi,
"energy": E, "charge": arr.Electron_charge}, with_name="PtEtaPhiECandidate") [evtfilter]
els = ak.to_backend(els, "jax")

els[:, @].mass

[0.03125,
0.0,
nan,
0.0,
0.03125]

type: 5 x float32

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Final results

e Awkward Array, Coffea, and Vector(!) are now differentiable
without any known issues, paving the way for introducing
automatic-differentiation in Analysis Grand Challenge.

e Had a nice long chat with Lino at PyHEP.dev about him |
pOSSiny picking up autod iff in AGC. athering related issues to easily be able to track everything in one place.

awkward#2591

2) 2603 (partner issue to coffea one
above)

meta items:
D (e 1) (99

Saransh-cpp commented last month

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

CE/RW
\

/7S

Preparing vector for future LHC/HL-LHC runs

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

NS
Motivation
e Several issues/design discussions popped up in vector
following:

o its adoption in Coffea

o the new JAX backend of awkward

o dask’s adoption in the analysis pipeline

© E] '----H

e All the work done changed vector to either solve bugs or VeI
adapt the library to physicists’ requirements.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

CERN
\

/7S

Results - v1.2

o fix:

o syncing backends to follow the same
promotion/demotion scheme for geometric
dimensions (demote to the lowest dimension)

o returning the correct awkward record when changing

dimensions W/ r I
o infix operations should not depend on the order of Vi 1 &
arguments
o respect user defined awkward mixin subclasses
e docs:
o better APl docs and tutorials
e chore:

o migrate to ruff
o migrate to pytest-doctestplus

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results - v1.3
e feat:

o allow momentum coords in to_Vector*D methods
o coordinate transformation functions with momentum

names
o 1like method for projecting vector to the coordinate
space of a given vector to mandate strict dimensionality B & G AR
checks (vector_3d + vector_4d will now error out Vit § UH

but vector_3d + vector_4d.like(vector_3d)
will work)
o fix:
o error out on operations on vectors of different
geometric dimensions

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results - v1.3.1

e feat:
o make momentum-ness infectious
o support dask-awkward 2024.3.0

o momentum coords should not be repeated with
generic coords in subclasses m '----H

Vi 1 &J

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results - v1.4
e feat:

o asympy backend (a whole another project)
o allow coord values in to_<coord names> methods

o call the square implementation for power 2 on object
vectors
o use negfactor in negfactor scale test

Computational upgrades to the high energy physics analysis pipeline

VEL 1 U

Vi 1 &J

Saransh Chopra

CERN
\

o sympy backend on numpy 2.0 (full numpy 2.0
support)
o add lower and upper bounds for deltaangle

o maximum for SymPy backend is the identity function
now = '----H

o get coordinate classes to work for numpy v=h ' U
e docs:

o add basic docs for sub-classing awkward mixins
e maintenance:

o add missing compute function tests

o add GitHub artifact attestations to package distribution

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Final results

e | added support for 1 new backend (SymPy) to vector (and
extended support for 2 more backends through Awkward -
Dask and JAX).

e Alot of bug fixes pointed out by physicists using vector
(physicists are using vector!) =1 '----H

Vi 1 &J

e Afew new features (more quality of life upgrades) requested
by physicists.

e Vector crossed 1 million downloads!

downloads 1M

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Migrating Coffea to Scikit-HEP/vector

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

NS
Motivation

e Coffea’s vector module pre-dates Scikit-HEP/vector, but now)
that vector has achieved maturity, it made sense to migrate ot
coffea’s internals to Scikit-HEP/vector. ! Q

e Scikit-HEP/vector is now much more sophisticated and
functional than coffea’s vector sub-package, including
support for third party libraries, such as, JAX, Dask, and COﬁea
SymPy.

IL

Vi1

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Working

ak._util.copy_behaviors

register
d a\:kward Coffea vector classes
. :Se_lt’ © abn hnu.mpy with the exact same Shacializid
Scikit-HEP/vector innheritance Partially working enaviors interface but with a inheriting .p
—_—h el : Candidate, Electron,
classes coffea vector classes different = coffea ¥

: Jet, ... vector classes

computational classes for chvsicists]

backend Py ’

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results

filename = "https://raw.githubusercontent.com/CoffeaTeam/coffea/master/tests/samples/nano_dy.root"

events = NanoEventsFactory. from_root(
{filename: "Events"},
schemaclass=NanoAODSchema,
metadata={"dataset": "DYJets"},
).events()

events.Jet.compute().__repr__()

"<JetArray [[Jet, ..., Jet], ...] type='40 x var x Jet[area: float32[paramet...'>"

Computational upgrades to the high energy physics analysis pipeline

Saransh Chopra

C\ERN
/7S

Results

events.Jet.compute().__class__.__mro__

(coffea.nanoevents.methods.nanoaod.JetArray,
coffea.nanoevents.methods.nanoaod.Jet,
coffea.nanoevents.methods.candidate.PtEtaPhiMCandidate,
coffea.nanoevents.methods.candidate.Candidate,
coffea.nanoevents.methods.vector.PtEtaPhiMLorentzVector,
coffea.nanoevents.methods.vector.LorentzVector
vector.backends.awkward.MomentumAwkward4D,
vector._methods.LorentzMomentum,
vector._methods.SpatialMomentum,
vector._methods.PlanarMomentum,
vector._methods.Momentum,
vector._methods.MomentumProtocolLorentz,
vector.backends.awkward.VectorAwkward4D,
vector.backends.awkward.VectorAwkward,
vector._methods.Lorentz,
vector._methods.Spatial,
vector._methods.Planar,
vector._methods.Vector4D,
vector._methods.Vector,
vector._methods.VectorProtocolLorentz,
vector._methods.MomentumProtocolSpatial,
vector._methods.VectorProtocolSpatial,
vector._methods.MomentumProtocolPlanar
vector._methods.VectorProtocolPlanar
vector._methods.VectorProtocol
coffea.nanoevents.methods.base.NanoCollection,
coffea.nanoevents.methods.base.Systematic,
awkward.highlevel.Array,
awkward._operators.NDArrayOperatorsMixin,
collections.abc.Iterable,
collections.abc.Sized,
object)

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

C\ERN
/7S

Results

muons = ak.zip(

{
"pt": events.Muon.pt,
"eta events.Muon.eta,
"phi": events.Muon.phi,
"mass": events.Muon.mass,
+

with_name="LorentzVector", # change accordingly - Muon, Jet, ...
behavior=vector.behavior, # change accordingly — nanoaod.behavior, candidate.behavior, ...
)

muons. compute().__repr__()
"<LorentzVectorArray [[I1, [I, [I, [1, ..., [1, [1, [1, [1] type='40 * var x ...'>"
import vector
muons = ak.zip(
"pt": events.Muon.pt,
"eta": events.Muon.eta,
"phi": events.Muon.phi,
"mass": events.Muon.mass,
+
with_name="Momentum4D",

behavior=vector.backends.awkward.behavior, # ideally use vector.register_awkward()
)

muons. compute().__repr__()

“"<MomentumArray4Dd [[1, [1, [1, [1, ..., [1, [1, [1, [1] type='4@ % var * Mom...'>"

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Final results
e Migration changes were a part of Coffea v2024.8.0.

e Can expect Coffea to entirely scrape its vector module and
ask users to depend on Scikit-HEP/vector by the end of the

year.

Saransh Chopra

Computational upgrades to the high energy physics analysis pipeline

CE/RW
\

/7S

Implementing non-uniform rebinning in boost-histogram

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Motivation

0 0.5 1 : 0 0.5 1
T Y T T O T I Regularaxis | | v L bbb
bh.axis.Regular(10,0,1) Rebinning bh.axis.Regular(20,0,1)
0 0.5 1 a8
. Vari= (\ 0 03 U5 J.
(N T N T T I QQO _ | | | |
P g bh.axis.Variable([0,.3,.5,1])

bh.axis.Regular(10,0,1) §$§6

Saransh Chopra

Computational upgrades to the high energy physics analysis pipeline

Motivation

LM, JR, MD, JH, DS

Priority 1:
/) scikit-hep/hist Nov 15th, 2021 Added by GitHub
» PyROOT: better histos and graphs interoperability with numpy arrays, honour protocol
» Histograms: advance current RHist implementation to one testable by experiments
» Improve interface to pass initial error values or covariance matrix to Minuit2
» Release a library for Lorentz vector computations on accelerators in SYCL (also using

generic n-dim arrays as inputs) o . . .
. (') fabriceMUKARAGE/rebinning_histogram Added by GitHub
riority 2: & 5
» Deliver plan and prototype of algorithmic improvements when dealing with parameter
constraints in ROOT’s minimisers
» PyROOT: Pythonise TF{1,2,3} and numerical algorithms interfaces (e.g. minimisers)
> Prototype SYCL kernels to be JITted (see Interpreters objectives)

» Histograms: Model and prototype of pipelining GPU histogram filling qut I.eply 2 month< ago
as S ag

ROOT 2024

k- D, Piparo, CERN EP-SFT - 1512024 0

[FEATURE] Non-uniform rebinning

©open

Full UHI
(© Open

yimuchen

henryiii Right now, histograms can only be rebinned by some integer amount via the 'hist.rebin indicator. | would be nice if there
was some way to rebin a certain axis arbitrary bin edges, as we might want to rebin a regular axis to be irregular just for low
statistic region, without requiring the exact binning scheme to be known during histogram construction.

The full UHI includes arbitrary reducers and rebinnings. This will need to be implemented before 1.0, but depends on

e : those/shouldlgolinto 0/6.0 o lat’s nominally target 0:7.0 for alfull URlimplementation: I'm ot sure what the most optimal method should be, maybe something like extending the existing hist.rebin class to
— include something like (hist.rebin(<new_axis>/<new bin edges>) to specify the new binning scheme of interest?

&

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

C\ERN
/7S

Working

Run the rebinning

. . \
facg algorithm in C++ handle
slices Return the Python
New Rebinner class —{ \ » bindings for the C++

groups handle histogram object

Rurdhe rebianing slices Create a new C++ Pass down the axis to

algarithmiinPythan ey object for Variable) the C++ histogram

axis object

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results

h = bh.Histogram(bh.axis.Regular(10, @, 1))
h.fill(np.random.normal(size=1_000_000))

Histogram(Regular(10, @, 1), storage=Double()) # Sum: 341530.0 (1000000.0 with flow)
rebin = bh.rebin(factor=2)

h[::rebin]

Histogram(Regular(5, @, 1), storage=Double()) # Sum: 341530.0 (1000000.0 with flow)
rebin = bh.rebin(groups=[1, 2, 3, 41)

h[::rebin]

Histogram(Variable([0, 0.1, 0.3, 0.6, 1], metadata=...), storage=Double()) # Sum: 341530.0

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results

s = bh.tag.Slicer()

h = bh.Histogram(
bh.axis.Regular(20, 1, 3),
bh.axis.Regular(30, 1, 3),
bh.axis.Regular(40, 1, 3)

)

h[{0: s[:: bh.rebin(groups=[1, 2, 3, 4, 10])]}].axes.size
(5, 30, 40)
hi
0: s[:: bh.rebin(groups=[1, 2, 3, 4, 10]1)1,
2: s[:: bh.rebin(groups=[1, 2 ,3, 4, 10, 20])]
}

l.axes[2].edges

array([1. , 1.05; 1.15, 1.3 ; 1.5 , 2. , 3. 1)

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Final results

e Released as a feature in boost-histogram v1.5

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Adding a sympy backend in vector

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Motivation

e Along with experimental physicists using vector for numerical R ———
computations, the SymPy backend will enable theoretical Vi 1 &J
physicists to utilize the library for symbolic computations.

e Since the SymPy vector classes and their momentum ED:l
equivalents operate on SymPy expressions, all of the
standard SymPy methods and functions work on the vectors,
vector coordinates, and the results of operations carried out
on vectors.

e Vector’'s compute functions operate on data containers, and
this behavior is tested using uncompyle6 on python 3.8.
Once Python 3.8 reaches EOL, the SymPy backend will
allow testing of this behavior.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Working

Can perform
NumPy/SymPy
operations on the
result

|
()

SymPy expll'esswns Args—> SymPy coordinate —Args—> SymPy vector
as coordinates classes classes
¥
Numerical values as Args—> Obj/NumPy/Awk —Args—> Obj/NumPy/Awk

coordinates coordinate classes vector classes

L]
l

Can perform
NumPy/Awkward
operations on the

result

Perform an
operation Shim layer mapping
s SymPy functions to
NumPy functions

Perform an
operation

Can perform SymPy
operations on the
result

Computational upgrades to the high energy physics analysis pipeline

- Mapped
function Compute functions

(duck typed)

Operate only on the data containers

wrap the result as a
scalar, vector, or
array of vectors

Can perform
ety Awkward operations
on the result

—

Can perform NumPy
operations on the
result

Saransh Chopra

(%ERPJ
/7S

Results

import vector

v = vector.MomentumObject4D(pt=1, phi=2, eta=3, M=10)
v

MomentumObject4D(pt=1, phi=2, eta=3, mass=10)

v.to_beta3()

MomentumObject3D(pt=0.07047186284717237, phi=2, eta=3)

v.boost(v.to_beta3())

MomentumObject4D (px=-1.1810297606283302, py=2.580597106671111, pz=28.430850335643896, mass=10)
v.boost(v.to_beta3()).px

-1.1810297606283302

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

C\ERN
/7S

Results

import vector; import sympy

pt, phi, eta, M = sympy.symbols("pt phi eta M", real=True)
v = vector.MomentumSympy4D(pt=pt, phi=phi, eta=eta, M=M)
v

MomentumSympy4D (pt=pt, phi=phi, eta=eta, mass=M)
v.to_beta3()

MomentumSympy3D (pt=pt/sqrt(Mx*2 + 0.25xpt#*k2x(1 + exp(-2xeta))kk2xexp(2keta)), phi=phi, eta=eta)

sympy.init_session()

IPython console for SymPy 1.12 (Python 3.11.5-64-bit) (ground types: python) eee

v.boost(v.to_beta3()).px

pt?sin® (¢) cos (¢)

in? 2 cos2
1 2 2 —21)2 2n) (_ pL2sin’ (¢) — piicos’ (¢) _
. / pt2sind (¢) pteor? (8)) Ol+ﬂ2®tu+e e M210.25pt(1-he-21)’e2n — M240.25pt(1+e-21) e
1

02009502100~ 20 221 w20 902102520 m2an osm2(1.00—20)\ 220

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results

v.boost(v.to_beta3()).px

pt?sin’® (¢) cos (¢)

pt2sin® (9) pt2cos? (¢)
1 1 (2 25pt2(1 —2m)2 217) (_ — d
+ \/” 25 (3) oo (9) 2 simh? () M? +0.25pt*(1 + e~*7)’e M240.25pt2(1+e-2)’e21 M240.25pt2(1+e-21)%e2n

M2+o.25pt2(1+r2'7)2¢2'7 M2+u.25p:2(1+e*7ﬂ) 229 M240.25pt2 (1+e*2'7)2¢2n

v.boost(v.to_beta3()).px.simplify()

pt (/M2 + pt? cosh? (n—) (\/ 1.0M2e2n+0.25pt2§4;2;217;3—1(’£2;52;:::‘:::i?);0'5‘m282"+0'25pt2 + 1) (1.0M2e27 + 0.25pt%e* — 1.0pt2e?"sinh? () — 0.5pt2e" +

Computational upgrades to the high energy physics analysis pipeline

Saransh Chopra

Results

values = {pt: 1, phi: 1, eta: 1, M: 1}
v.boost(v.to_beta3()).px.subs(values)

sin? (1) cos (1) .
5 2 5 1 __ sinb?(1) _ sin® (1) B cos? (1)) (i
(1 +0.25(e72 + 1)%) 1+ i) w0 el (140.25(e2+1)%2 1+40.25(e2+1)%2 1+0.25(e-2+1)%?2 +1 1
\/ l+0.25(e_2+l)2e2 1+0.25(e_2+1)252 1+D.25(e_2+1)232

v.boost(v.to_beta3()).px.subs(values).evalf()

1.98699002164743

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Final results

e The SymPy backend was released as a part of vector v1.4.

e Caveat: Operations on SymPy vectors are only 100%
compatible with numeric vectors (Python, NumPy, and
Awkward backends) if the vectors are positive time-like. The
space-like and negative time-like cases have different sign
conventions.

e Abstract accepted at CHEP 2024 as a poster (October).

e Abstract accepted at PyHEP (presented). CHEP
2024

Conference on Computing in High Energy and Nuclear Physics

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

CE/RW
\

/7S

Histogramming on GPUs - cuda-histogram

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Motivation

e Manasvi’'s work on Awkward Arrays on GPUs garnered a lot
of interest, especially from Coffea developers.

e Though the work on Awkward Arrays is being carried out in
full throttle, more pieces are required to perform a complete
analysis of high energy physics data on GPUs.

e One of the major missing pieces is the ability to generate and
manipulate histograms as objects on CUDA.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Working

e Implements a subset of the features of boost-histogram using CuPy (see API
documentation for a complete list), completely independent from boost-histogram:

o Axes
m Regular and Variable axes
m edges()

m centers()
m index(...)

o Histogram
e fill(..., weight=...) (including Nan flow)
o simple indexing with slicing
o values(flow=...)
o variance(flow=...)
e Allows users to detach the generated GPU histogram to CPU -
o to_boost() - converts to boost-histogram.Histogram
o to_hist() - converts to hist.Hist

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Working

e Differences from boost-histogram/hist API:
o Has an additional NaN flow
Accepts only CuPy arrays
underflow is indexed as 0 and not -1
ax[...] will return a cuda_histogram.Interval object
No interpolation is performed
Hist indices should be in the range of bin edges, instead of integers

O O O O O

e Near future goals for the package -
o Implement support for Categorical axes (exists internally but need
refactoring to match boost-histogram's API)
o Improve indexing (__getitem__) to exactly match boost-histogram's
API

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results

import cuda_histogram; import cupy as cp

axl = cuda_histogram.axis.Regular(10, @, 1)
cuda_histogram.axis.Variable([@, 2, 3, 61)

cuda_histogram.Hist(ax1l, ax2)

>>> ax1l, ax2, h
(Regular(10, ©, 1), Variable([@. 2. 3. 6.]1), Hist(Regular(10, ©, 1), Variable([@. 2. 3. 6.1)

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results

h.fill(cp.random.normal(size=1_000_000), cp.random.normal(size=1_000_000))

>>> h.values(), type(h.values())
64.1],

(array([[28532.,
[29603.,
[30543.
[31478.
[32692.
[32874.
[33584.
[34304.
[34887.
[35341.

1238.,
1399
1341.
1420.
1477 .
1441.
1515.
1490.
1598.
1472.

61.
78.
98.
92
96.
88.

L}
I
I
I
I
I

I

sdln
.11),

#

set flow=True for flow bins

<class 'cupy.ndarray'>)

Computational upgrades to the high energy physics analysis pipeline

(underflow,

#

OVE

set weight=...

flow f

nanflc

Saransh Chopra

CERN
\

NS

Results

>>> ax1.index(0.5)
array([61)

>>> ax1.i
array([e])

>>> ax1[e]
<Interval ((-inf, ©.0)) instance at 0x1c905208790>

>>> hle, el, type(hle, @1)
(Hist(Regular(1, @.0, @.1), Variable([@. 2.])), <class 'cuda_histogram.hist.Hist'>)

>>> h[@, @].values(), type(h[@, @8].values())
(array([[28532.11), <class 'cupy.ndarray'>)

>>> h[@, :].values(), type(h[@, @].values())
(array([[28532., 1238., 64.11), <class 'cupy.ndarray'>

>>> h[@0.2, :]l.values(), type(h[@, @].values()) # indices in r
(array([[30543., 1341., 78.11), <class 'cupy.ndarray'>

>>> h[:, 1:2].values(), type(h[®, @l.values()) # no on
C:\Users\Saransh\Saransh_softwares\OpenSource\Python\cuda-histogram\src\cuda_histogram\axis)\
warnings.warn(

(array([[28532.1],

[29603.1,

[30543.1,

[31478.1,

[32692.1,

[32874.1,

[33584

[34304.1,

[34887.1,

[35341.11), <class 'cupy.ndarray'>)

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Results

h.to_boost()

>>> h.to_boost().values(), type(h.to_boost().values())
(array([[28532., 1238., 64.1,

[29603. 139957 61.1]

[30543., 1341., 78.1

[31478. 1420., 98.1

[32692. 14775 9231

[32874., 1441., 96.1

[33584. SUSHLE, |

[34304. 1490., 114.1]

[34887., 1598., 116.]

[35341. 1472., 11), <class 'numpy.ndarray'>)
h.to_hist()

>>> h.to_hist().values(), type(h.to_hist().values())
(array([[28532., 1238.,

[29603., 1399., 61.

[30543., 1341., 78%

[31478., 1420., 98"

[32692. 1477. 92,

[32874. 1441. 96.

[33584. 15157 88.

[34304. 1490. 114.

[34887. 1598. 1165

[35341. 1472. 103.11), <class 'numpy.ndarray'>)

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Final results
e Moved to Scikit-HEP at PyHEP.dev! v0.1.0 available on PyPI!

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

CER/W
\

/7S

What am | doing now?

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

What am | doing now?

e Writing a JOSS paper for vector, preparing for CHEP, and grad school applications soon.

e Moved to London and joined UCL’s Advanced Research Computing Centre as a full-time
Assistant Research Software Engineer.
o Developing contents/infrastructure and TAing for “Research Software Engineering with
Python.”
o Adding GPU (CuPy) and autodiff (JAX) support to full-universe simulations for cosmology
(GLASS - Generator for Large Scale Structure).

e Still maintaining vector+cuda-histogram and answering issues/discussions related to my work.
o | get5% FTE to spend on research software outside of my official work.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

C\ERN
/7S

Acknowledgements

e Thank you IRIS-HEP for funding this work!

e | can definitely not end this without thanking Jim for being an amazing supervisor. Absorbing and
working with such vast knowledge in such a short period was possible only because of his
constant support!

e Given that my work encompassed multiple pieces or libraries of the data analysis pipeline, | was
fortunate enough to be guided by several other incredible people - Henry Schreiner, Lindsey
Gray, Nicholas Smith, Alexander Held, Matthew Feickert, ... - and | am thankful to each one of
them.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

Thank you!

Computational upgrades to the high energy physics data analysis pipeline Saransh Chopra

Backup

Computational upgrades to the high energy physics data analysis pipeline Saransh Chopra

C\ERN
/7S

Introduction

e High energy physics data is not regular/uniform. A particular
stream of collision events can produce different number of
particles.

e Awkward Array is designed to make working with ragged
arrays as trivial as manipulating regular (non-ragged)
N-dimensional arrays in NumPy.

e JAX s Autograd and XLA, brought together for
high-performance numerical computing. The high level API
(jax.numpy) is basically JIT-compileable and differentiable
numpy

e One can make custom data containers compatible with JAX
API by registering a way to flatten and unflatten them.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

C\ERN
/7S

Introduction

e \Vector is a Python library for 2D, 3D, and Lorentz vectors,
especially arrays of vectors, to solve common physics
problems in a NumPy-like way.

e \ector has (had) 5 backends - pure Python Objects, NumPy

arrays for vectors, and Awkward arrays of vectors + Numba w7 r 717
support for Object type and Awkward type vectors for JIT Vit § UH
compilation

e | worked on vector two years back!
> Schreiner, H., Pivarski, J., & Chopra, S. vector [Computer
software]. https://doi.org/10.5281/zen0d0.5942082

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

https://doi.org/10.5281/zenodo.5942082

C\ERN
/7S

Introduction

e Coffea provides basic tools and wrappers for enabling)
not-too-alien syntax when running columnar Collider HEP e

analysis. ! Q

e |t makes use of Scikit-HEP libraries like uproot and
awkward-array but also implements histogramming, plotting,
and vector functionalities on its own + it is possible with COﬁea
coffea to scale a HEP analysis from a testing on a laptop to:
a large multi-core server, computing clusters, and [Dj
super-computers.

Vi1

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

CERN
\

NS

Introduction

e Boost-histogram provides the python bindings for
Boost::Histogram, a C++14 library. This is one of the fastest
libraries for histogramming, while still providing the power of
a full histogram object.

e Universal Histogram Interface (UHI) is a standard for .&
histogramming formalised by IRIS-HEP, but it has still not .Boosll-s-;
been adopted entirely by boost-histogram, ROOT, Hist, |Stog am

e Every library is pushing to adopt the UHI standard.

e | worked on implementing the rebinning piece of UHI.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

C\ERN
/7S

Introduction

e SymPy is a Python library for symbolic mathematics, a B 4 S N SR

full-featured computer algebra system (CAS) written entirely

in Python. Viis 1 &J
e \/ector can perform numerical computation on high energy EB:l

physics using pure Python, NumPy, and Awkward Arrays;

hence, it is used by experimental physicists in their analysis
pipelines.

e \ector's SymPy backend will create a stronger connection
between software used by experimentalists and software
used by theorists.

Computational upgrades to the high energy physics analysis pipeline Saransh Chopra

