
Automatic Differentiation in RooFit using Clad

Automatic Differentiation in RooFit using Clad

Vaibhav Thakkar
Supervisor: Dr Vassil Vassilev (CERN / Princeton University)

Automatic Differentiation in RooFit using Clad

RooFit
RooFit: C++ library for statistical data analysis in ROOT.

● Used for modelling and normalization of probability
density functions (p.d.f)

● Fitting likelihood models to the event data set.
○ Minimizing both binned and unbinned

likelihoods

● Used most prominently by the LHC experiments,
also for discovering the Higgs boson in 2012

○ Example of profile likelihood scan on the right

Automatic Differentiation in RooFit using Clad

Minimization
- For optimizing parameters, we minimize the likelihood using Minuit 2

(implements a minimization algo similar to BFGS)

- The minimization time for many-parameter models is dominated by

gradient evaluation time

(see also the ICHEP 2022 RooFit presentation)

- Our goal: make evaluating gradients cheap again with Automatic
differentiation (AD) using source code transformation

https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://agenda.infn.it/event/28874/contributions/169205

Automatic Differentiation in RooFit using Clad

Brief Intro of Automatic Differentiation

Reference: V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x, int N=5) {
 double result = x;
 for (unsigned i = 0; i < N; i++)
 result = std::exp(result);
 return result;
}

AD

double f_dx(double x, int N=5) {
 double result = x;
 double d_result = 1;
 for (unsigned i = 0; i < N; i++) {
 result = std::exp(result);
 d_result *= result;
 }
 return d_result;
}

Figure out the analytical fn

Symbolic via Wolfram Alpha

Handcode

Automatic Differentiation in RooFit using Clad

Crux of AD - Computational graph + Chain rule

x0

zy

x1

w0

w1

y = f(x0, x1)
z = g(y)
w0, w1 = l(z) zy

w0

w1

x0

x1

Essentially, a generalization of backpropagation (from deep learning).

Automatic Differentiation in RooFit using Clad

Clad
● Source transformation based AD tool for C++

○ Runs at compile time - clad generates a readable (and easily debuggable) code for derivatives.

○ Optimization capabilities of the Clang/LLVM Infrastructure enabled by default.

● Support for control flow expression - not possible with operator overloading approaches.
○ Better handling of complex control flow logic handling compared to machine-learning frameworks like

Tensorflow and Pytorch, hence more suitable for scientific computing scenarios.

● Easy integration with ROOT infrastructure.
○ Clad’s compiler research team has integration in High Energy Physics (HEP), and making significant

improvements for RooFit use case.

Automatic Differentiation in RooFit using Clad

About Clad - usage example
// Source.cpp
#include "clad/Differentiator/Differentiator.h"
#include <iostream>

double f (double x, double y) {
 return x*y;
}

double main() {
 // Call clad to generate the derivative of f wrt x.
 auto f_dx = clad::differentiate(f, "x");

 // Execute the generated derivative function.
 std::cout << f_dx.execute(/*x=*/3, /*y=*/4) << std::endl;
 std::cout << f_dx.execute(/*x=*/9, /*y=*/6) << std::endl;

 // Dump the generated derivative code to stdout.
 f_dx.dump();
}

4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)

double f_darg0 (double x, double y) {
 double _d_x = 1;
 double _d_y = 0;
 return _d_x * y + x * _d_y;
}

clang++ -I clad/include/ -fplugin=clad.so Source.cpp

Automatic Differentiation in RooFit using Clad

Experiments with Atlas Benchmark models

● For multiple minimizations w.r.t different constant parameters, the likelihood gradient can be reused.

○ Amortizing the JIT time across multiple minimizations.

Automatic Differentiation in RooFit using Clad

Experiments with Atlas Benchmark models

● Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.

○ Constant factor of the consumption by primal function.

Automatic Differentiation in RooFit using Clad

Further Improvements in Clad
● Using Automatic Differentiation for computing Hessians

○ Computing only the diagonal entries of Hessians.

● Further improvements in Clad to remove redundant computations for Gradients.
○ Advanced analysis for improving the efficiency of Gradient computations.

● Experimenting with make the gradient computation parallelizable.
○ Trying vector forward mode for Hessians.

Automatic Differentiation in RooFit using Clad

Questions ?Thank you

 Questions or Comments ?

