Automatic Differentiation in RooFit using Clad

Vaibhav Thakkar

Supervisor: Dr Vassil Vassilev (CERN / Princeton University)

COMPILER

C|R

RESEARCH

Data Analysis Framework

Automatic Differentiation in RooFit using Clad

L ¥ PRINCETON
UNIVERSITY

RooFit
RoofFit: C++ library for statistical data analysis in ROOT.

Used for modelling and normalization of probability

([
density functions (p.d.f)

Fitting likelihood models to the event data set.
Minimizing both binned and unbinned

likelihoods

O

e Used most prominently by the LHC experiments,
also for discovering the Higgs boson in 2012

O

Example of profile likelihood scan on the right

R N IoawaNa

= ATLAS 2011 -2012

§ Is=7TeV: |Ldt=4.6-481b"
{s=8TeV: [Ldt=5.8-5.9 fb"

10"|...,|....|'...|..,.1.‘:".‘n|....1....
110 115 120 125 130 135 140 145 150
m, [GeV]

Automatic Differentiation in RooFit using Clad

Mlnlmlzatlon Gradient

For optimizing parameters, we minimize the likelihood using Minuit 2
(implements a minimization algo similar to BEGS) line search

- The minimization time for many-parameter models is dominated by

gradient evaluation time Gradient
(see also the ICHEP 2022 RooFit presentation)
line search
- Our goal: make evaluating gradients cheap again with Automatic
differentiation (AD) using source code transformation
Gradient

Automatic Differentiation in RooFit using Clad

https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://agenda.infn.it/event/28874/contributions/169205

Brief Intro of Automatic Differentiation

X

flx) = e

Symbolic via Wolfram Alpha

Figure out the analytical fn

// E(x)=e" (e”(e"(e" (e"x))))
#include <cmath>
double f (double x, int N=5) {
double result = x;
for (unsigned i = 0; 1 < N;
result = std::exp(result);
return result;

i++)

AD

i Handcode

X X
e€ e€ X x
d (eee) — pxte® +e +e® +e’

double f dx(double x, int N=5) ({
double result = x;

double d result = 1;
for (unsigned 1 = 0; 1 < N; i++)
result = std::exp(result) ;

d result *= result;

}

return d result;

}

{

Reference: V. Vassilev - Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

Automatic Differentiation in RooFit using Clad

Crux of AD - Computational graph + Chain rule

‘ ‘ owl dwlaz dy
° G 0x0 0z dydx0

Essentially, a generalization of backpropagation (from deep learning).

y = £(x0, x1) @
z = gl(y)
w0, wl = 1(z) '

Automatic Differentiation in RooFit using Clad

Clad

e Source transformation based AD tool for C++
o Runs at compile time - clad generates a readable (and easily debuggable) code for derivatives.
o Optimization capabilities of the Clang/LLVM Infrastructure enabled by default.

e Support for control flow expression - not possible with operator overloading approaches.
o Better handling of complex control flow logic handling compared to machine-learning frameworks like
Tensorflow and Pytorch, hence more suitable for scientific computing scenarios.

e Easy integration with ROOT infrastructure.

o Clad’s compiler research team has integration in High Energy Physics (HEP), and making significant
improvements for RooFit use case.

Automatic Differentiation in RooFit using Clad

About Clad - usage example

// Source.cpp
#include "clad/Differentiator/Differentiator.h"
#include <iostreams>

double f (double x, double y) {

return x*y;

} clang++ -I clad/include/ -fplugin=clad.so Source.cpp
double main() {
// Call clad to generate the derivative of f wrt x.
auto f dx = clad::differentiate(f, "x"); 4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)
// Execute the generated derivative function.
std::cout << f dx.execute(/*x=%/3, /*y=*/4) << std::endl; double f darg0 (double x, double y) {
std::cout << f dx.execute(/*x=%*/9, /*y=*/6) << std::endl; double d x = 1;
double d y = 0;
// Dump the generated derivative code to stdout. return d x * y + x * _d y;
f dx.dump() ; }

}

Automatic Differentiation in RooFit using Clad

Experiments with Atlas Benchmark models

Atlas Higgs Model benchmark - single minimization

o T
o E E
JIT Time ® Minimization time m Seeding time g 3 ATLAS 2011 - 2012 —— Obs. E
oo 3 = is=7TeV: [Ldt-46-48b" - 3
L 1s=8TeV: [Ldt=5.85.91b" O+ k=
e e a 00
75 = 1o
n i 20
E 4 o
2 50
@ 4c
£
E 25 ;_ """""""""""""""""""""""""""""""" 50
B
o “CRRELEEELEELLEREL LRI e ack aacty e e LR ERE 2 60
Legacy CPU CPU Codegen + AD e =
(ROOT 6:30 default) (ROOT 6:32 detaul) i 1 R T
) . . 110 115 120 125 130 135 140 145 150
Final Min Val = -368.36 for all evaluations my [GeV]

e For multiple minimizations w.r.t different constant parameters, the likelihood gradient can be reused.
o Amortizing the JIT time across multiple minimizations.

Automatic Differentiation in RooFit using Clad

Experiments with Atlas Benchmark models

Clad JIT Time (ms) vs Channels

Primal to Gradient Evaluation time Ratio vs Channels

o 124" + 802
8000 500
6373
. 5810 ® ¢ 4.00
@ 6000 5115
£ 4699 e -]
g 4187 S 300
E o0 3323 o o
[2519 ® = 200
= 1906 » T
E 2000 @ i1}
o 1.00
0
0.00
10 20 30 40 50 10 20 30 40 50
Channels Channels

e Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.
o Constant factor of the consumption by primal function.

Automatic Differentiation in RooFit using Clad

Further Improvements in Clad

e Using Automatic Differentiation for computing Hessians
o Computing only the diagonal entries of Hessians.

e Further improvements in Clad to remove redundant computations for Gradients.
o Advanced analysis for improving the efficiency of Gradient computations.

e Experimenting with make the gradient computation parallelizable.
o Trying vector forward mode for Hessians.

Automatic Differentiation in RooFit using Clad

Thank you

Questions or Comments ?

Automatic Differentiation in RooFit using Clad

