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RooFit
RoofFit: C++ library for statistical data analysis in ROOT.

Used for modelling and normalization of probability

([
density functions (p.d.f)

Fitting likelihood models to the event data set.
Minimizing both binned and unbinned

likelihoods

O

e Used most prominently by the LHC experiments,
also for discovering the Higgs boson in 2012

O

Example of profile likelihood scan on the right
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Mlnlmlzatlon Gradient

For optimizing parameters, we minimize the likelihood using Minuit 2
(implements a minimization algo similar to BEGS) line search

- The minimization time for many-parameter models is dominated by

gradient evaluation time Gradient
(see also the ICHEP 2022 RooFit presentation)
line search
- Our goal: make evaluating gradients cheap again with Automatic
differentiation (AD) using source code transformation
Gradient
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https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://agenda.infn.it/event/28874/contributions/169205

Brief Intro of Automatic Differentiation

X

flx) = e

Symbolic via Wolfram Alpha

Figure out the analytical fn

// E(x)=e" (e”(e"(e" (e"x))))
#include <cmath>
double f (double x, int N=5) {
double result = x;
for (unsigned i = 0; 1 < N;
result = std::exp(result);
return result;

i++)

AD

i Handcode

X X
e€ e€ X x
d (eee ) — pxte® +e +e® +e’

double f dx(double x, int N=5) ({
double result = x;

double d result = 1;
for (unsigned 1 = 0; 1 < N; i++)
result = std::exp(result) ;

d result *= result;

}

return d result;

}

{

Reference: V. Vassilev - Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation
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Crux of AD - Computational graph + Chain rule

‘ ‘ owl dwlaz dy
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Essentially, a generalization of backpropagation (from deep learning).

y = £(x0, x1) @
z = gl(y)
w0, wl = 1(z) '
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Clad

e Source transformation based AD tool for C++
o Runs at compile time - clad generates a readable (and easily debuggable) code for derivatives.
o  Optimization capabilities of the Clang/LLVM Infrastructure enabled by default.

e Support for control flow expression - not possible with operator overloading approaches.
o  Better handling of complex control flow logic handling compared to machine-learning frameworks like
Tensorflow and Pytorch, hence more suitable for scientific computing scenarios.

e Easy integration with ROOT infrastructure.

o Clad’s compiler research team has integration in High Energy Physics (HEP), and making significant
improvements for RooFit use case.

Automatic Differentiation in RooFit using Clad



About Clad - usage example

// Source.cpp
#include "clad/Differentiator/Differentiator.h"
#include <iostreams>

double f (double x, double y) {

return x*y;

} clang++ -I clad/include/ -fplugin=clad.so Source.cpp
double main() {
// Call clad to generate the derivative of f wrt x.
auto f dx = clad::differentiate(f, "x"); 4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)
// Execute the generated derivative function.
std::cout << f dx.execute(/*x=%/3, /*y=*/4) << std::endl; double f darg0 (double x, double y) {
std::cout << f dx.execute(/*x=%*/9, /*y=*/6) << std::endl; double d x = 1;
double d y = 0;
// Dump the generated derivative code to stdout. return d x * y + x * _d y;
f dx.dump() ; }

}
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Experiments with Atlas Benchmark models

Atlas Higgs Model benchmark - single minimization
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e For multiple minimizations w.r.t different constant parameters, the likelihood gradient can be reused.
o Amortizing the JIT time across multiple minimizations.
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Experiments with Atlas Benchmark models

Clad JIT Time (ms) vs Channels

Primal to Gradient Evaluation time Ratio vs Channels
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e Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.
o  Constant factor of the consumption by primal function.
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Further Improvements in Clad

e Using Automatic Differentiation for computing Hessians
o  Computing only the diagonal entries of Hessians.

e Further improvements in Clad to remove redundant computations for Gradients.
o Advanced analysis for improving the efficiency of Gradient computations.

e Experimenting with make the gradient computation parallelizable.
o  Trying vector forward mode for Hessians.
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Thank you

Questions or Comments ?
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