
3.0
G. Watts (UW/Seattle)

For the ServiceX Team

Nov 1, 2024



ServiceX Architecture Reminder

Web API

backend

frontend

G. Watts (UW/Seatte)



Recent Developments in ServiceX

• Backend Developments (ServiceX itself)
• 1.4.1 (August 7th) -> 1.5.X (Sept 20th)
• Lessons from the IDAP 200 Gpbs test: reduce lost internal scaling messages, small 

updates to how we transform the data, lots of small stability improvements.
• New transformers/codegenerators to run plain-old-python
• The WebAPI did not change, however!
• Won’t really discuss further

• Front End (Library to enable user interaction)
• 3.0 released Sept 20th (after 5 months of development)
• Big (breaking) change in how the user interacts with ServiceX
• Pulled several ideas from the community into the central library (e.g. datasets)
• Queries can be coded with typed classes, dictionaries, or yaml text files now!
• DOCUMENTATION!!

G. Watts (UW/Seatte)



Getting Started: Help!

Find our new documentation on readthedocs:

ServiceX 3.0.0 documentation

Missing something? Spot an error?

Create an issue

Or… the source for the documentation is in the repo

Submit a MR

G. Watts (UW/Seatte)

https://servicex-frontend.readthedocs.io/en/stable/
https://github.com/ssl-hep/ServiceX_frontend/issues
https://github.com/ssl-hep/ServiceX_frontend/tree/master/docs


How does it work?

Data Source (FileList, Rucio, etc.)
• Where to get the data from

Query
• How to transform the data
• Raw, func_adl, etc.

G. Watts (UW/Seatte)



How does it work?

Sample
• Consists of the data set and 

query together
• Produces a set of files
• Labeled with the Name

G. Watts (UW/Seatte)



How does it work?

Samples
• You can submit 1 or 100 

samples at a time
• Output will always be a dict

of everything

All of these objects take lots of extra 
parameter that allow you to specify 
explicitly:
• Code generator
• Backend ServiceX location
• Transformer image, etc.

The servicex.yaml file is still required!!

G. Watts (UW/Seatte)



How does it work?

deliver changes the spec with the 
Samples into files.
• There is an async version of this 

coming soon!
• It will handle all interaction with 

the ServiceX backend via the 
WebAPI

G. Watts (UW/Seatte)



Using a Dictionary instead…

We expect:
• Dictionary is the easiest to use for 

quick oneoffs
• Typed classes will be used by 

libraries and frameworks
• The YAML is attractive because it 

can be checked into git directly!

At its core, the frontend only uses the 
typed classes – everything is 
translated into that!

G. Watts (UW/Seatte)



Using YAML
The YAML file itself:

Use in SX:

There is not yet a full text representation for all 
query languages!

G. Watts (UW/Seatte)



Other Queries: Func_ADL xAOD (Fully Typed)

Func_adl

ServiceX Spec 
and Delivery

G. Watts (UW/Seatte)



Status

• The Analysis Grand Challenge and the 
IDAP 200 Gbps code has been converted 
to use 3.0

• Being used in the wild as well (been out 
about 1.5 months).

• However, there are some rough edges
• 3.0.1’s branch already has a significant 

number of updates
• Will release “soon”

• We also have a backlog of new features 
where we are planning for 3.1

ssl-hep/ServiceX_frontend: Client access library for ServiceX

G. Watts (UW/Seatte)

https://github.com/ssl-hep/ServiceX_frontend


Backup

G. Watts (UW/Seatte)



Full Python Function Transformer!!

ServiceX Spec 
and Delivery

Python Function

This allows one to 
extract non-ntuple-
like objects from the 
file (e.g. cutflow, 
etc.)

G. Watts (UW/Seatte)


