
Peter Fackeldey

10/28/24

Demo Day
-

rust-histogram

About me

• I’m a postdoctoral research associate with Princeton University

• Working on Analysis Systems in IRIS-HEP

• Started ~2 months ago, based in Princeton

• Previously:

• PhD at RWTH Aachen University

• Scientific advisor for the ErUM-Data-Hub

• HH bbWW in CMS (di-leptonic channel & statistics contact)→

2

https://erumdatahub.de/en/

rust-histogram

• Tried a Rust based implementation of boost-histogram

• Invested 2 days (+ a Sunday evening)

• Repo: https://github.com/pfackeldey/rust-histogram

• Why?

• Learning Rust

• Learning boost-histogram (internals)

• Possibility to add & test sparsity

3

Not to be used in production!!!

https://github.com/pfackeldey/rust-histogram

Histogram: internals4

S

B

0 50 100 200

Hist with 2 axes: Categorical (“S”, “B”) and Variable

S S S B B B

0 50 100
200
0 50 100 200

User Interface 
(Python/NumPy-View) Internal memory layout (C++/Rust)

Histogram: memory layout & filling5

S

B

0 50 100 200

S S S B B B

0 50 100
200
0 50 100 200

User Interface Internal memory layout

What happens when you call hist.fill(“B”, 60) ?

1. Find index of categorical axis: idx_cat = 1 (lookup:)

2. Find index of variable axis: idx_var = 1 (binary search:)

3. Calculate strided_index for internal memory layout

𝒪(1)

𝒪(log n)

Histogram: memory layout & filling6

S S S B B B

0 50 100
200
0 50 100 200

Internal memory layout

What happens when you call hist.fill(“B”, 60) ?

• axes: cat (# 2 bins), var (# 3 bins)

• indices: idx_cat = 1, idx_var = 1

 strided_index = → (0 ⋅ 2 + 1) ⋅ 3 + 1 = 4

S

B

0 50 100 200

User Interface

NumPy-style striding

rust-histogram: sparsity

• Often our histograms are quite sparse due to the high-dimensionality:
We don’t need to fill every systematic for every category, etc.

• We can introduce sparsity in 2 ways, instead of holding the dense ND array

the idea is to only have filled bins in memory:

1. Use 2 Vecs: one for bin content, one for it’s index

2. Use a HashMap: key corresponds to index, value to bin content

• (1) SparseHist

• (2) HashMapHist

• Side note: Rust’s std lib HashMap is highly performant with SIMD instructions.
It’s a port of Google’s “SwissTable”.

7

HashMapHist: memory layout & filling8

Internal memory layout HashMap: 
strided_index bin content→

What happens when you call hist.fill(“B”, 60) ?

• Everything stays the same as before…

1. Find index of categorical axis: idx_cat = 1 (lookup:)

2. Find index of variable axis: idx_var = 1 (binary search:)

3. Calculate strided_index for internal memory layout

• …but now we store only the filled bins:

𝒪(1)

𝒪(log n)

4 →

here:

HashMapHist: memory layout & filling9

Internal memory layout HashMap: 
strided_index bin content→

What happens when you call hist.fill(“B”, 60) ?

• Everything stays the same as before…

1. Find index of categorical axis: idx_cat = 1 (lookup:)

2. Find index of variable axis: idx_var = 1 (binary search:)

3. Calculate strided_index for internal memory layout

• …but now we store only the filled bins:

𝒪(1)

𝒪(log n)

4 →

here:

JavaScript arrays are  
just HashMaps…

• How much is the memory consumption?

10 HashMapHist: memory consumption

 saved 66% of memory→

4 →

S S S B B B

0 50 100
200
0 50 100 200

(Standard) Dense Hist(HashMap) Sparse Hist

2 ⋅ 4 bytes = 8 bytes 6 ⋅ 4 bytes = 24 bytes

• Drawback: densely filling a HashMapHist increases memory by 2x
(we store bin contents and indices)

rust-histogram: features

• StorageTypes:

• Double: stores sumw as f32

• Int: stores sumw as i32

• Weight: stores sumw and sumw2 as (f32, f32)

• Axis:

• Uniform: constructs a uniform axis with n bins between start and stop

• Variable: constructs a variable axis with edges as bin edges

• Category: constructs a categorical axis with String as bin labels

• Integer: constructs a categorical axis with i32 as bin labels

• Hist:

• VecHist: stores the histogram bins in a Vec<StorageType> (dense)

• SparseHist: stores the filled histogram contents (StorageType) and indices (usize) in a Vec respectively

• HashMapHist: stores the filled histogram indices and contents in a HashMap<usize, StorageType>

11

rust-histogram: features

• StorageTypes:

• Double: stores sumw as f32

• Int: stores sumw as i32

• Weight: stores sumw and sumw2 as (f32, f32)

• Axis:

• Uniform: constructs a uniform axis with n bins between start and stop

• Variable: constructs a variable axis with edges as bin edges

• Category: constructs a categorical axis with String as bin labels

• Integer: constructs a categorical axis with i32 as bin labels

• Hist:

• VecHist: stores the histogram bins in a Vec<StorageType> (dense)

• SparseHist: stores the filled histogram contents (StorageType) and indices (usize) in a Vec respectively

• HashMapHist: stores the filled histogram indices and contents in a HashMap<usize, StorageType>

12

• Growable axes

• Multi-threading

• Axis transformations

• Circular axis

Missing bits

rust-histogram: example13

Imports

Axes construction

Hist construction

.fill()

rust-histogram: performance

• Followed setup of: https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/

• Fill 2D hist with 1M data points

• Results:

• boost-histogram: 4.04ms

• rust-histogram (VecHist): 22.60ms

• rust-histogram (HashMapHist): 23.70ms

• (rust-histogram (SparseHist): 1.29s)

14

Henry’s benchmark 
(different MBP…)

No optimizations attempted,  
also I probably did some bad things

 ms𝒪(1 − 100)

https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/

Rust experience

• Very different coding philosophy to what I’m used to

• Pros:

• Memory safety (doesn’t prevent us from bad performance or leaks though!)

• Tooling (& especially compiler) is an amazing experience
(I managed to write most of boost-histogram in just 2.5 days without prior knowledge in Rust!)

• Functional programming

• Traits (Composition instead of Inheritance), Tagged unions, Errors as values

• Macros are surprisingly easy to use and very powerful

• Not really have to deal with pointers

• Cons:

• I spent 75% thinking about my types and traits, and 25% on the actual implementation (it’s hard to think Rust
as a Python programmer)

• Axes growth: horrible in Rust!
This basically mutates everything very non-functional programming-like

• No variadic args, no overloading, no OOP (inheritance etc), different philosophies (e.g. “rust libs never panic”)

→

15

Sparsity in boost::histogram

• You can use std::map/std::unordered_map in C++ boost::histogram
(I just learned about this on Wednesday…)

• There are no python bindings, because several things are unclear:

• How to access the C++ buffers, e.g. keys/values as 1D NumPy arrays?

• How to serialize?

• How to slice?

• At some point we’d want to have a performant HashMap implementation
(C++ std::map is slow)

• Starting to add HashMap storage with Henry soon…

16

Summary

• Sparse memory layout of histograms can help reduce memory consumption in
Dask workers

• High dimensionality typically increases sparsity

• Performance of rust-histogram:

• My implementation is worse than boost-histogram, but relatively close to
NumPy

• It’s still fast: filling 10M events takes ~200ms (link)
…but analyzing 10M events takes typically several minutes

• We need to think about memory of ND histograms

• Key takeaways: sparsity is possible in boost::histogram & Rust (tooling) ❤

17

https://github.com/pfackeldey/rust-histogram/blob/main/bench/README.md

