=] PRINCETON (g

UNIVERSITY

Demo Day

rust-histogram

Peter Fackeldey

10/28/24

2 About me

 |'m a postdoctoral research associate with Princeton University
 Working on Analysis Systems in IRIS-HEP
e Started ~2 months ago, based in Princeton

* Previously:

e PhD at RWTH Aachen University
e Scientific advisor for the ErUM-Data-Hub

e HH—bbWW in CMS (di-leptonic channel & statistics contact)

https://erumdatahub.de/en/

3 rust-histogram

 Tried a Rust based implementation of boost-histogram
e |[nvested 2 days (+ a Sunday evening)
 Repo: https://github.com/pfackeldey/rust-histogram
e \Why?
e [earning Rust
e | earning boost-histogram (internals)

e Possibility to add & test sparsity

Not to be used in production!!!

https://github.com/pfackeldey/rust-histogram

4 Histogram: internals

Hist with 2 axes: Categorical (“S”, “B”) and Variable

User Interface
(Python/ NumPy-View)

100 200 50

0
- I Iml I Imlm
4 1 1

Internal memory layout (C++/Rust)

5 Histogram: memory layout & filling

What happens when you call hist.fill(“B”, 60) ?
1. Find index of categorical axis: idx_cat = 1 (lookup: ©O(1))

2. Find index of variable axis: idx_var = 1 (binary search: O(log n))

3. Calculate strided index for internal memory layout

User Interface Internal memory layout

100 200

ST
- Il N

100 100 200

200
0 50
S S

6 Histogram: memory layout & filling

What happens when you call hist.fill(“B”, 60) ?

e axes: cat (# 2 bins), var (# 3 bins) NumPy-style striding
let mut strided_index = 0;
® indices: idx_Cat —_ 1, idx_var — 1 for (axis, 1dx) 1in ax iter().zip(indices.iter()) {

let stride = axis.num_bins(true);

strided index = strided index * stride + 1dx;

— strided index=(0-2+1)-3+1=4

User Interface Internal memory layout

100 200

ST
- Il N

100

0 50
S

100 200

200

S

rust-histogram: sparsity

Often our histograms are quite sparse due to the high-dimensionality:
We don't need to fill every systematic for every category, etc.

 \We can introduce sparsity in 2 ways, instead of holding the dense ND array

the idea is to only have filled bins in memory:
1. Use 2 Vecs: one for bin content, one for it's index
2. Use a HashMap: key corresponds to index, value to bin content
e (1) SparseHist
e (2) HashMapHist

e Side note: Rust’s std lib HashMap is highly performant with SIMD instructions.
It's a port of Google’s “SwissTable”.

8 HashMapHist: memory layout & filling

What happens when you call hist.fill(“B”, 60) ?

e Everything stays the same as before...
1. Find index of categorical axis: idx_cat = 1 (lookup: O(1))

2. Find index of variable axis: idx_var = 1 (binary search: O(log n))

3. Calculate strided index for internal memory layout

e ...but now we store only the filled bins;:

here:

Internal memory layout HashMap: A .
strided_index — bin content —

9 HashMapHist: memory layout & filling

What happens when you call hist.fill(“B”, 60) ?

e Everything stays the same as before...
1. Find index of categorical axis: idx_cat = 1 (lookup: O(1))

2. Find index of variable axis: idx_var = 1 (binary search: O(log n))

3. Calculate strided index for internal memory layout

e ...but now we store only the filled bins: quaScript arrays are
just HashMaps...
> deno repl
Deno 2.0.3
here,' exit using ctrl+d, ctrl+c, or close()

> x = [1, 2, 3]

> x[100] = 4
4

Internal memory layout HashMap: A .
strided_index — bin content —

> console.log(x)
[1' 2' 3'

10 HashMapHist: memory consumption

e How much is the memory consumption?

(HashMap) Sparse Hist (Standard) Dense Hist
100 200

200
0 50 100
+~ IIIIII
S

2 - 4 bytes = 8 bytes 6 - 4 bytes = 24 bytes

— saved 66% of memory

e Drawback: densely filling a HashMapHist increases memory by 2x
(we store bin contents and indices)

11 rust-histogram: features

e StorageTypes:
e Double: stores sumw as 132
e |nt: stores sumw as 132
o \Neight: stores sumw and sumw?2 as (32, 132)
e AXIS:
e Uniform: constructs a uniform axis with n bins between start and stop
e \ariable: constructs a variable axis with edges as bin edges
e Category: constructs a categorical axis with String as bin labels
* |nteger: constructs a categorical axis with 132 as bin labels
e Hist:
e \/ecHist: stores the histogram bins in a Vec<Storage Type> (dense)
o SparseHist: stores the filled histogram contents (Storage Type) and indices (usize) in a Vec respectively

e HashMapHist: stores the filled histogram indices and contents in a HashMap<usize, Storage Type=>

12 rust-histogram: features

e StorageTypes:
e Double: stores sumw as 32
e |nt: stores sumw as 132
o \Neight: stores sumw and sumw?2 as (32, 132)
e AXIS:
e Uniform: constructs a uniform axis with n bins between start and stop
e \ariable: constructs a variable axis with edges as bin edges
e Category: constructs a categorical axis with String as bin labels
* |nteger: constructs a categorical axis with 132 as bin labels
e Hist:

e \/ecHist: stores the histogram bins in a Vec<Storage Type> (dense)

Missing bits

e Growable axes

 Multi-threading

e AXxis transformations

e Circular axis

o SparseHist: stores the filled histogram contents (Storage Type) and indices (usize) in a Vec respectively

e HashMapHist: stores the filled histogram indices and contents in a HashMap<usize, Storage Type=>

13 rust-histogram: example

use hist::hist::Histogram;
se hist axes::axils:: AxX1s; |mp0rtS
ise hist_axes::uniform::Unifoxm;

ise hist_storages:: {Storage, StorageType};

et axisil Uniform:: new(10, 0.0, 10.0).unwrap();

Axes construction

let axis?2 Uniform:: new(10, 0.0, 10.0).unwrap();

let axes = vec!|
Box :: new(axisl.clone()) as Box<dyn Axis>,

Box :: new(axis2.clone()) as Box<dyn Axis>,

Hist construction

mut hist = super::HashMapHist::new(axes, StorageType ::Double);

et where2fill = vec![axisl.index(0.5), axis2.index(0.5)]; _
hist.fill (&where2fill, 1.0).unwrap(); -f|”()

14 rust-histogram: performance

e Followed setup of: https://iscinumpy.qitlab.io/post/histogram-speeds-in-python/

+ Fill 2D hist with 1M data points Henry's benchmark

Example KNL MBP X24
o Re S u I t S " Physt 121s 293 ms || 246 ms
- NumPy: histogram2d 456 ms fl4ms | 88.3 ms
NumPy: add.at 247 ms 62.7ms | 49.7ms
. NumPy: bincount 81.7 ms 23.3ms | 20.3 ms
® b O O S t- h I StO g ra m : 4 . O 4 m S fast-histogram 53.7 ms 104 ms | 7.31ms
fast-hist threaded 0.5 (6)625ms | 978ms | (6)15.4 ms
fast-hist threaded (m) 62.3 ms 489 ms | 3.71ms
e rust-histogram (VecHist): 22.60ms e O(1 = 100) ms
. . Numba threaded (6)49.2ms | 4.23ms | (6)4.12ms

112 ms 12.2 ms 11.2 ms

Cython threaded (6) 128 ms 5.68 ms | (8)4.89 ms

e rust-histogram (HashMapHist): 23.70ms

pybindll OpenMP atomic | 4.06 ms 6.87ms | 1.91ms

pybindll C++11 atomic (32)10.7ms | 708 ms | (48)2.65 ms
pybindill C++11 merge (32)23.0ms | 6.03 ms | (48)4.79 ms

e (rust-histogram (SparseHist): 1.29s) i e mere | 874 | s24ms [1

No optimizations attempted,
also | probably did some bad things

https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/

15 Rust experience

e Very different coding philosophy to what I'm used to
* Pros:
e Memory safety (doesn’t prevent us from bad performance or leaks though!)

e Tooling (& especially compiler) is an amazing experience
(I managed to write most of boost-histogram in just 2.5 days without prior knowledge in Rust!)

* Functional programming
e Traits (Composition instead of Inheritance), Tagged unions, Errors as values
 Macros are surprisingly easy to use and very powerful
* Not really have to deal with pointers
e Cons:

e | spent 75% thinking about my types and traits, and 25% on the actual implementation (it's hard to think Rust
as a Python programmer)

* Axes growth: horrible in Rust!
This basically mutates everything — very non-functional programming-like

* No variadic args, no overloading, no OOP (inheritance etc), different philosophies (e.g. “rust libs never panic”)

16 Sparsity in boost::histogram

 You can use std::map/std::unordered _map in C++ boost::histogram
(I just learned about this on Wednesday...)

 There are no python bindings, because several things are unclear:

e How to access the C++ buffers, e.g. keys/values as 1D NumPy arrays?

e How to serialize?

e How to slice?

e At some point we'd want to have a performant HashMap implementation
(C++ std::map Is slow)

e Starting to add HashMap storage with Henry soon...

17 Summary

e Sparse memory layout of histograms can help reduce memory consumption in
Dask workers

 High dimensionality typically increases sparsity
 Performance of rust-histogram:

e My implementation is worse than boost-histogram, but relatively close to
NumPy

o |t's still fast: filling 10M events takes ~200ms (link)
...but analyzing 10M events takes typically several minutes

 \We need to think about memory of ND histograms

o Key takeaways: sparsity is possible in boost::histogram & Rust (tooling) @

https://github.com/pfackeldey/rust-histogram/blob/main/bench/README.md

