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Cornerstone of modern Particle Physics

Describes 3 of the 4 fundamental forces of

Standard Model

the universe

Elementary particles — 6 quarks, 6 leptons,

4 gauge bosons, 1 scalar boson

Still, many open question persist:

O

O

Inclusion of gravity,

Dark matter and energy,
Neutrino masses,
Matter/anti-matter asymmetry,

etc.
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The CMS detector
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Minimum lonizing Particle Timing Detector (MTD)
will help untangle overlapping events
e High Luminosity LHC (HL - LHC) will

deliver 150 - 200 simultaneous pp 2 Simulated Vertices
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We are working with prototyping BTL mechanics
and assembly

These tests and activities happened during last year to be prepared for this year, when the assembly is
happening:

e BTL tray insertion tool assembly and testing.

e Tray assembly.

e Annealing test of the BTL prototype segment at 10° CO,, cooling, and other regimes.




Studying top-quark decay channels
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Dead-cone effect in b-jets in top-quark decays

As the bottom quark decays, it looses its
energy by radiating gluons

This radiation is surpressed for a cone of
angular size:

Oq = Mg/ Eq

This is called the dead-cone effect
Measuring this effect is one of the ways of
testing QCD

This effect has already been measured for the
charm quarks, but would be the first
measurement for the bottom quarks




ther activities at CMS

e \Working on MTD DCS (Detector Control System) and
DSS (Detector Safety System)

e Doing DCS shifts at CMS Control room

e Previously worked on Particle Flow Hadron
Calibration code
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Importance of top quark mass
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CERN Baltic Con/zrence 2023

Particle Flow Hadron Calibration ™ [F¢3 Q) @

Synchronizing online and offline calibration codes

] ] m Conrado Muiioz Diaz, Dace Osite
I. 5 conrado.munce diaz@cernch, m f Technologies, Riga Technical University, Riga Latvia

— Before High Level Trigger (HLT), “online datasets” are stored.

identified > particle-flow

(PF) reconstruction
algorithm is used.

* Once HLTis applied, offline datasets are obtained as reconstructed events.

" particke guns: P0G ) [MCsimuistion gy -~
partile 1D combined
with 2 -momentum.

*  PFiscombining both the 3\\\ \«
tracking and calorimeter ///

e CMS detector has non-linear energy response — ===

hadrons needs to be calibrated. s el oot |
calorimeters are used. [1] Ehudrons
PF Hadron Calibration Procedure

through CMS detector
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Due to differences between online and o

offline (even with the same parameters o

and fitting functions), it is time to study J
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— if the NTuples are different for online
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when the NTuples are generated.
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Work towards CMS autorship rights

New collaborators must complete a set amount of non-analysis work to qualify for co-authorship
rights for CMS publications

Measured in EPR (Experimental Physics responsibilities) points (1 point = 1 month of work)

To qualify, 6 EPRs are required (followed by 4 EPRs annually)

2 EPRs: Validation of ‘Special Remote DESY Summer-School 2023’ plugins with Rivet (14 in
total between two PhD students)

2 EPRs: Development of read-only gridpack creation for MadGraph NLO event generation

2 EPRs: Work on the MIP timing detector for the HL-LHC upgrade (system development and
assembly)

1"



Experimental physics responsibilities

Validation of physics analysis summer school Read-only gridpack creation for MadGraph
plugins with Rivet NLO event generation
e Rivet - toolkit used for validation of Monte e MadGraph - one of the Monte Carlo event
Carlo event generators generators used for collision simulations
e Monte Carlo generators allow to compare
Acquired From article experimental data with theory
, DBl b ey 6 E T R Y e Normally, preparation and untarring of
o —+— Data e L ¥2ﬁﬁ"sa'svﬂ E . . .
& .l — Madgraph | P i L gridpacks is a computationally heavy
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I : | 107" gl T Sherpa E

%
107 oy I ] process
> ley | E ES E . . .
-LL,L - 1 e This is why there is an effort to develop
] | ’ : centralized read-only gridpacks that are
pre-compiled and can be easily accessed
g | for particle collision simulations
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Work on thesis topic analysis

Study of final-state radiation in Z boson decays produced at pp collisions at 13 TeV at the CMS
Research of Z boson decay processes at 13 TeV will allow for more precise modelling of
different particle production and decay parameters

e By conducting final state radiation measurements in Z boson decay events, the reconstruction
of low transverse momenta photons in the CMS experiment can be improved

e In general, such a study would help improve various particle production and decay parameters,
like the radiative contribution to the Z and W boson decays
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The CERN accelerator complex
Complexe des accélérateurs du CERN

Antimatter Experiment: gravity, Interferometry,
Spectroscopy

@\ 14



Feasibility study for OTIMA interferometer

Moiré deflectometer OTIMA interferometer
Grating periodicity: >40um Grating periodicity: 532nm (if 1064nm laser is
used)

Flux only depends on solid angle
Flux depends both on solid angle and limits

imposed by time
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Positronium studies

Positronium laser cooling
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Positronium studies

Upgrade of the Rydberg excitation laser

ionization
2
n=17-30
el e
= L=
| 3
33p Q19 laser
-
£
3 antiproton positronium
o trap conversion
13 e <7~ %ﬂ
Y4 e* = ( : >_ free-fall
b’x‘/ _*
annihilation 7 al H
I I E S - H*
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Antiprotonic atoms

Capture of the
antiprotonin a high-n
Rydberg state.

Auger electrons.

Cascade emitting x-rays and

Antiproton approaching stripped

nucleus, strong interaction
influences orbitals. Resonance
effects can take place.

Linebroadening caused
by annihilation with
nuclear perifery.

Annihilation on nucleus
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LINAC Overview

ION
Source

e,

Treatment
Rooms
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LINAC Structures

Alvarez Drift Tube LINAC (DTL) Quasi-Alvarez Drift Tube LINAC (QA-DTL)

Interdigital H-mode DTL (IH-DTL) Separated Interdigital H-mode DTL (S-IH-DTL)




LINAC Drift Tube Design

Drift Tube within E-mode DTLs

Drift Tube within H-mode DTLs




Radio Frequency (RF) Design

Poisson Superfish Codes CST Studio Suite
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Beam Optics - '°C** lons
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Design and Optimization of Suspension System for
Hadron Therapy Gantry Superconducting Magnets

) s



How to make the comparison unbiased and fair?

LPM modelling

1)
) 4 Y )
Can be extended to n > 8 tie rods
) 7] )

6 supports

2) LPM Validation

o LPM o, LPM o, LPM GLPM _ 6,LPM  6,LPM

| 8 supports

e 20 variables e 6 variables (symmetry)
e [Existing examples

[

Finite Element Analysis Lumped Parameter Model At 3t At At « 4t A At
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( 9 9) ( ) 3) Optimization...
6 [deg]  ; rotational error 8, ) rotational error 8,
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How to make the comparison unbiased and fair?

4) ...Design (Material and dimensions)

Heat flux from 60 K t

FN

Heat flux [W]
) w

0 2 30
Equivalent diameter [mm]

0 4.7K

40 50

- A_G10

— - A_Ti6AI4V 25

- A_SS304

= A_Invar-36

5) Comparison

Table 2. Comparison of the main parameters and figure of merits of the two

architectures.

Pose performance figure of merit
—- A_G10

—~ A_Ti6AI4V
’.:_"Q - A_SS304
% —= A_Invar-36
7 - -== — B_G10
— B_Ti6AI4V
B_SS304
— B_Invar-36

20 30 40 50
Equivalent diameter [mm] — B_CFRP

A B % improv.

Material Ti6AI4V CFRP
Geometry tube double band
Equivalent diameter mm 18.0 182

ex mm 0.36 0.37 -4%
ey mm 0.32 0.24 23%
es mm 0.45 0.36 20%
[/ mrad 0.16 0.04 73%
Oy mrad 0.36 0.12 65%
ds mrad 0.56 0.22 60%
FOM dipole 1 14 18 38%
FOM dipole 2 23 1.3 -43%
FOM dipole 3 2 14 -30%
FOM dipole 4 1.7 13 -24%
FOM average 179 144 -20%
Max load kN 19.9 223

Safety factor 122 122

Heat flux @ 4.5 K w 0.55 0.11 80%
Compressor input power kW 2.6 0.5 80%

Mathematical models for the 6 supports and 8
supports have been developed and validated

Mathematical model for 8 supports can be
extended to “n” supports

Both designs have been optimized (Genetic
algorithms) thanks to the models developed

The designs can be compared in a fair manner
thanks to the methodology used

The 6 supports system is easier to align and more
reliable during the alignment

The 8 supports system is less subject to
deformations during operation and cheaper to
maintain at cold

)
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Next lon Medical Machine Study and FLASH therapy

HeLICS Heiium Light-lon Compact Synchrotron

Development of next-generation compact accelerator
technologies for medical applications in ion therapy:
developments on new lattice designs,
superconducting magnets, extraction methods and
FLASH delivery

O
O

pulse structure, radiation quality,
fractionation etc.

COULD WE COUPLE FLASH
AND HEAVY ION THERAPY? 111

FLASH therap

Biologically observed differential effect — when
irradiation with ionizing irradiation is performed at
ultra-high dose rates - adverse effects in healthy
tissue are greatly reduced while DNA damage in
cancerous tissue remains the same

Timescale of dose delivery: milliseconds

34Gy* 31Gy*

28Gy*

To achieve it dosimetrically:
high dose: > 8-10 Gy
high dose rate: > 40 Gy/s

Conv

Open questions regarding

FLASH

[ 1] Vozenin M-C, De Fornel P, Petersson K, et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients.

Clinical Cancer Research 2019

28



Measurement of long-lived, stable radiolysis end-products - hydrogen
peroxide - for verification of radioactive oxygen species (ROS)
importance for FLASH therapy

Solvated electron scavangers (nitrous oxide and sodium nitrate) were
used to gain mechanistical insight in radiochemical processes

3.0
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Modelling studies on FLASH effect and delivery
Dose threshold Pencil beam model for delivery

100

g 107!
L ® .
8 210 e Accounting for
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2 _ 5 400% &
'§§§ B [ Deep-seated g 1073 dose, LET and
ol R 2
285 200 3 10+ parametrs
SEE 100% s i i
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o 1 21 3pa 4 6/; 7)j 9Re 10p 12, 1dp 160 20 & .
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approaches for
ions: fransmission
beams, 3D range
modulators,
focused beams etc.

LET, [keV/um]

Through chemistry: Dose rate

e Exploration of radiochemical changes under UHDR
irradiation - dose rate threshold scaling for
different ion types R o ; T %

Off-axis distance, [mm]
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Work with bachelor students: Imaging methods
PET verification Particle radiography

e Work of CERN summer students:

o High energy proton radiography by Aurelija Vinke
o Helium-3 radiography by llze Baumgarte

15 WEPL Image, 783 MeV
180 =
0§08
180
Experimental Image 250 MeV, 16 mm
o
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Paldies!






Study of the b-fragmentation function at the CMS
experiment

e  Process through which b quarks produced in high

| - —
bottom hadron - determined experimentally and W/ﬁ —> B hadron
/ | = 3% decay
|g :
|
w

\: —

Non-
energy collisions transform into a bottom hadron I I perturbative
|
through combination with other quarks and gluons. : | QCD v,m K Z
e Fragmentation function: probability distribution that Hard process I Perturbative } B
| | %
describes how a b quark eventually fragments into a : QCD l g**
|
|
|
|
|

parametrized in theoretical models.
e Essential for precision measurements (CP violation, >N ————————

Higgs boson and top quark properties, new physics

Hadronisation

bi
|
searches). |
|
e Plays significant role in reconstruction and :

identification of b jets.

CERN 34
Z



EPR tasks & other activities

Involvement into the assembly and testing of the Barrel Timing Layer (BTL), a thin
cylindrical detector for the MIP Timing Detector (MTD). Tasks performed include:

« Tray insertion tests and rail installations at the BTST (BTL Tracker Support Tube).

« Thermal and annealing tests on SiPMs (Silicion Photomultiplier Modules).

» Cooling Tray assembly shifts.
Assigned the role of Top Data Quality Management (DQM) contact for the TOP PAG as
part of my EPR tasks. Tasks performed include:

* Assessing the quality of new data and Monte Carlo campaigns to ensure accuracy and reliability.

« Identifying issues and investigate causes.

» Generate reports.

« Developing and maintaining tools.
Performed shifts at CMS control room as a Detector Control System (DCS) Technical
Shifter.
Implementing performance analytics scripts for the new Tier-2 grid site in Latvia which
was inaugurated on 5/06/2024. Liaison point between the IT engineers in Latvia and the
CMS O&C group while on the Long Term Attachment (LTA).
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Experimental physics responsibilities

1% d01-x01-y01:

402-x01-y0: 1% d03-x01-y01:
9 et 190

Validation of Rivet plugins

Monte Carlo (MC) contact for BTV group
e preparing fragments of MC datasets and
requesting them on behalf of the analyzers

Setup of training in b-hive with UParT
e b-hive is a framework for machine learning (ML)
on ROOT files

e UParT is ML model for b-jet tagging f ulMRm W Mm d

Work on the assembly of MIP timing detector

CERN 36
Z



Colour flow and jet puli

e quarks and gluons carry QCD charge, known as colour
(three different colour states r, g, b)

e by “tracking” the colour flow, it is possible to distinguish
whether quarks come from colourfull particles (gluons) or
colourless particles (e.g. bosons)

e an observable that can be used in distinguishing
between the two is called jet pull
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