

## Latvian Students at CERN

### **Standard Model**

- Cornerstone of modern Particle Physics
- Describes 3 of the 4 fundamental forces of the universe
- Elementary particles → 6 quarks, 6 leptons,
  4 gauge bosons, 1 scalar boson
- Still, many open question persist:
  - Inclusion of gravity,
  - Dark matter and energy,
  - Neutrino masses,
  - Matter/anti-matter asymmetry,
  - etc.



#### **Standard Model of Elementary Particles**



### **The CMS detector**





# Minimum Ionizing Particle Timing Detector (MTD) will help untangle overlapping events

- High Luminosity LHC (HL LHC) will deliver 150 - 200 simultaneous pp collisions (now 65) per bunch crossing.
- MTD is introduced to provide a better track-time resolution.
- MTD has two regions: Endcap and Barrel Timing Layer (ETL and BTL).
- BTL consists multiple trays forming a cylinder, ETL consists of several wedges forming discs.





# We are working with prototyping BTL mechanics and assembly

These tests and activities happened during last year to be prepared for this year, when the assembly is happening:

- BTL tray insertion tool assembly and testing.
- Tray assembly.
- Annealing test of the BTL prototype segment at  $10^{\circ}$  CO<sub>2</sub> cooling, and other regimes.



### **Studying top-quark decay channels**





### **Dead-cone effect in b-jets in top-quark decays**

- As the bottom quark decays, it looses its energy by radiating gluons
- This radiation is surpressed for a cone of angular size:

 $\Theta_Q = M_Q / E_Q$ 

- This is called the **dead-cone** effect
- Measuring this effect is one of the ways of testing QCD
- This effect has already been measured for the charm quarks, but would be the first measurement for the bottom quarks





### **Other activities at CMS**

- Working on MTD DCS (Detector Control System) and DSS (Detector Safety System)
- Doing DCS shifts at CMS Control room
- Previously worked on Particle Flow Hadron Calibration code

|              | <b>Q</b> ' | 8    |          |                  | 2      | 8     | \$      | +      |       | đ | A | R      | 1:1 | English, US (en | US.utfl | 81 👤            |                     |               |          |           |               |                             |              |
|--------------|------------|------|----------|------------------|--------|-------|---------|--------|-------|---|---|--------|-----|-----------------|---------|-----------------|---------------------|---------------|----------|-----------|---------------|-----------------------------|--------------|
| C and<br>Sel | MTRS-      | rs   |          |                  |        |       |         |        |       |   |   |        |     |                 |         | Tal             | ble last refreshed: | 2024.08.19    | 9 17:49: | 16.762    | Ref           | resh                        |              |
| Senso        | enabled?   | Sens | or name  |                  |        |       |         |        |       |   |   | Value  |     | Upper limit or  | ?       | Lower limit on? | Upper limit value   | Lower limit v | alue     | Alarm     |               |                             |              |
| _            | 2          | cms  | mtdtf do | s 1:MT           | RS/MTD | TIF 1 | 18/Chip | 0/Chan | nel 0 |   | _ | 22.616 | 2   | 2               | _       |                 | 2                   | 3             |          | 0         |               |                             |              |
|              | ž          | cms  | mtdtf do | s 1:MT           | RS/MID | TIF 1 | 18/Chip | 0/Chan | nel 1 |   |   | 22.932 |     | ~               |         | ~               | 2                   | 3 @           | My Panel | (cms mtd  | tf.dcs.1 - MT | DTIE Project: #             | 7) -         |
|              | 2          | cms  | mtdtf do | s 1:MT           | RS/MTD | TIF 1 | 18/Chip | 0/Chan | nel 2 |   |   | 22.863 |     | - E             |         | ~               | 2                   | 3             |          |           |               |                             |              |
|              | 2          | cms  | mtdtf do | s 1:MT           | RS/MTD | TIF 1 | 18/Chip | 0/Chan | nel 4 |   |   | 22.876 |     | E .             |         | Ē               | 2                   | 3             | -        |           | (1)7003/7     | 0 70 4010                   |              |
|              | ž          | cms  | mtdtf do | s 1:MI<br>s 1:MT | RS/MID | TIF 1 | 18/Chip | 1/Chan | nel 0 |   |   | 23 194 |     | - F             |         | -               | 2                   | 4             | cms_     | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI<br>TD_TIF_18/CI | hip_U/Chann  |
|              | 2          | cms  | mtdtf do | s 1.MT           | RS/MTD | THE 1 | 18/Chip | 1/Chan | nel 4 |   |   | 23.072 |     | E               |         |                 | 2                   | 4             | cms_     | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | nip_0/Chann  |
|              | 2          | cms  | mtdtf do | s 1:MI<br>s 1:MT | RS/MID | TIF 1 | 18/Chip | 2/Chan | nel 0 |   |   | 22.679 |     | - E             |         | -               | 2                   | 4             | cms_r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | nip_0/Chann  |
|              |            |      |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms i    | ntati des | 1:MTRS/MT     | D TIE 18/C                  | nip U/Channi |
|              |            |      |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms_r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | hip_1/Chann  |
|              |            |      |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms_r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | hip_1/Chann  |
|              |            | -    |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | np_1/Channe  |
|              |            |      |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms_r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | hip_1/Channe |
|              |            | -    |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     | _             | cms_     | ntdtf_dcs | _1:MTRS/MT    | D_TIF_18/CI                 | hip_1/Channe |
|              |            |      |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | np_2/Channe  |
|              |            | -    |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms_     | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | nip_2/Chann  |
|              |            |      |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms_r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | hip_2/Channe |
|              |            | -    |          |                  |        |       |         |        |       |   |   | -      |     |                 |         |                 |                     |               | cms_r    | ntatt_acs | 1:MTRS/MT     | D_TIF_18/CI                 | hip_2/Channe |
|              |            |      |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | cms r    | ntdtf dcs | 1:MTRS/MT     | D TIF 18/CI                 | hip 3/Channe |
|              |            | -    |          |                  |        |       |         |        |       |   |   |        |     | -               |         |                 |                     |               | cms_r    | ntdtf_dcs | 1:MTRS/MT     | D_TIF_18/CI                 | hip_3/Channe |
|              |            | _    |          |                  |        |       |         |        |       |   |   |        |     |                 |         |                 |                     |               | Leme 1   | ntdtf dee | 1 MTDC/MT     | Th THE 19/01                | vin 2/Channy |
|              | o          |      |          |                  |        |       |         |        |       |   |   |        |     |                 | . 1     | in a second     |                     |               |          |           |               |                             |              |
| Co           | ntirm      |      |          |                  |        |       |         |        |       |   |   |        |     | Confirm uppe    | ۲I.     | Confirm lower   | Set upper limit     | Set li        |          | Hect      |               |                             |              |



### Importance of top quark mass



### **Particle Flow Hadron Calibration**

- CMS detector has non-linear energy response  $\rightarrow$  hadrons needs to be calibrated.
- New code is being created in a different programming language (more comprehensive)
- Use of others methods to calibrate: power-law based or Machine Learning.





### Work towards CMS autorship rights

- New collaborators must complete a set amount of non-analysis work to qualify for co-authorship rights for CMS publications
- Measured in EPR (Experimental Physics responsibilities) points (1 point = 1 month of work)
- To qualify, 6 EPRs are required (followed by 4 EPRs annually)
- 2 EPRs: Validation of 'Special Remote DESY Summer-School 2023' plugins with Rivet (14 in total between two PhD students)
- 2 EPRs: Development of read-only gridpack creation for MadGraph NLO event generation
- 2 EPRs: Work on the MIP timing detector for the HL-LHC upgrade (system development and assembly)



### **Experimental physics responsibilities**

Validation of physics analysis summer school plugins with Rivet

• Rivet - toolkit used for validation of Monte Carlo event generators



Read-only gridpack creation for MadGraph NLO event generation

- MadGraph one of the Monte Carlo event generators used for collision simulations
- Monte Carlo generators allow to compare experimental data with theory
- Normally, preparation and untarring of gridpacks is a computationally heavy process
- This is why there is an effort to develop centralized read-only gridpacks that are pre-compiled and can be easily accessed for particle collision simulations



### Work on thesis topic analysis

- Study of final-state radiation in Z boson decays produced at pp collisions at 13 TeV at the CMS
- Research of Z boson decay processes at 13 TeV will allow for more precise modelling of different particle production and decay parameters
- By conducting final state radiation measurements in Z boson decay events, the reconstruction of low transverse momenta photons in the CMS experiment can be improved
- In general, such a study would help improve various particle production and decay parameters, like the radiative contribution to the Z and W boson decays







Antimatter Experiment: gravity, Interferometry, Spectroscopy









### **Feasibility study for OTIMA interferometer**

Moiré deflectometer

Grating periodicity: >40µm

Flux only depends on solid angle



**OTIMA** interferometer

Grating periodicity: 532nm (if 1064nm laser is used)

Flux depends both on solid angle and limits imposed by time





### **Positronium studies**

Positronium laser cooling







### **Positronium studies**

Upgrade of the Rydberg excitation laser

33P

1<sup>3</sup>S





H\*

free-fall



### **Antiprotonic atoms**





### **Other participation in AEgIS**





### **LINAC Overview**







### **LINAC Structures**

#### Alvarez Drift Tube LINAC (DTL)



#### Quasi-Alvarez Drift Tube LINAC (QA-DTL)



#### Interdigital H-mode DTL (IH-DTL)



#### Separated Interdigital H-mode DTL (S-IH-DTL)





### **LINAC Drift Tube Design**

**Drift Tube within E-mode DTLs** 



#### **Drift Tube within H-mode DTLs**





### Radio Frequency (RF) Design

#### **Poisson Superfish Codes**

#### **CST Studio Suite**







### **Beam Optics - <sup>12</sup>C<sup>4+</sup> Ions**







### **Design and Optimization of Suspension System for Hadron Therapy Gantry Superconducting Magnets**



PhD Thesis study

HITRIplus contribution to Mechanical Integration





### How to make the comparison unbiased and fair?



• 20 variables

- 6 variables (symmetry)
- Existing examples

Finite Element Analysis (Standard Engineering)



5 - 10 configurations/h

Lumped Parameter Model (PhD)

$$\int_{0}^{L} \mathbf{N}_{j} \cdot \left(\frac{\mathbf{N}_{0} + X\mathbf{N}_{X} + Y\mathbf{N}_{Y}}{EA}\right) ds = \mathcal{W}_{\text{ext}},$$

50000 configurations/h

1) LPM modelling

$$\int_0^L \mathbf{N}_j \cdot \left(\frac{\mathbf{N}_0 + X\mathbf{N}_X + Y\mathbf{N}_Y}{EA}\right) \, ds = \mathcal{W}_{\text{ext},j}$$

Can be extended to n > 8 tie rods

#### 2) LPM Validation





0, LPM \_\_ 0, LPM \_\_ 0, LPM

× e<sub>x</sub> FEA (25 mm) × e<sub>y</sub> FEA (25 mm) × e<sub>z</sub> FEA (25 mm) o e<sub>x</sub> FEA (15 mm) o e<sub>y</sub> FEA (15 mm) o e<sub>z</sub> FEA (15 mm)  $\theta_x$  FEA (25 mm)  $\times \theta_y$  FEA (25 mm)  $\times \theta_z$  FEA (25 mm)  $\theta_x$  FEA (15 mm)  $\odot \theta_y$  FEA (15 mm)  $\odot \theta_z$  FEA (15 mm)

3) Optimization...



### How to make the comparison unbiased and fair?



... Design (Material and dimensions)

#### 5) Comparison

Table 2. Comparison of the main parameters and figure of merits of the two architectures.

|                        |      | A       | В           | % improv. |
|------------------------|------|---------|-------------|-----------|
| Material               |      | Ti6Al4V | CFRP        |           |
| Geometry               |      | tube    | double band |           |
| Equivalent diameter    | mm   | 18.0    | 13.2        |           |
| $e_x$                  | mm   | 0.36    | 0.37        | -4%       |
| $e_y$                  | mm   | 0.32    | 0.24        | 23%       |
| $e_s$                  | mm   | 0.45    | 0.36        | 20%       |
| $\theta_x$             | mrad | 0.16    | 0.04        | 73%       |
| $\theta_y$             | mrad | 0.36    | 0.12        | 65%       |
| $\theta_s^{\circ}$     | mrad | 0.56    | 0.22        | 60%       |
| FOM dipole 1           |      | 1.3     | 1.8         | 38%       |
| FOM dipole 2           |      | 2.3     | 1.3         | -43%      |
| FOM dipole 3           |      | 2       | 1.4         | -30%      |
| FOM dipole 4           |      | 1.7     | 1.3         | -24%      |
| FOM average            |      | 1.79    | 1.44        | -20%      |
| Max load               | kN   | 19.9    | 22.3        |           |
| Safety factor          |      | 12.2    | 12.2        |           |
| Heat flux @ 4.5 K      | W    | 0.55    | 0.11        | 80%       |
| Compressor input power | kW   | 2.6     | 0.5         | 80%       |

- Mathematical models for the 6 supports and 8 supports have been developed and validated
- Mathematical model for 8 supports can be extended to "n" supports
- Both designs have been optimized (Genetic algorithms) thanks to the models developed
- The designs can be compared in a fair manner thanks to the methodology used
- The 6 supports system is easier to align and more reliable during the alignment
- The 8 supports system is less subject to deformations during operation and cheaper to maintain at cold



4)

### **Next Ion Medical Machine Study and FLASH therapy**

#### HeLICS Helium Light-Ion Compact Synchrotron



Development of next-generation compact accelerator technologies for medical applications in ion therapy: developments on new lattice designs, superconducting magnets, extraction methods and *FLASH* delivery

#### **FLASH** therapy

- Biologically observed differential effect when irradiation with ionizing irradiation is performed at ultra-high dose rates - adverse effects in healthy tissue are greatly reduced while DNA damage in cancerous tissue remains the same
- Timescale of dose delivery: milliseconds
- To achieve it dosimetrically:
- high dose: > 8-10 Gy
- high dose rate: > 40 Gy/s

• Open questions regarding pulse structure, radiation quality, fractionation etc.

#### COULD WE COUPLE FLASH AND HEAVY ION THERAPY?







### **Experimental radiochemistry studies under UHDR**

- Measurement of long-lived, stable radiolysis end-products hydrogen peroxide - for verification of radioactive oxygen species (ROS) importance for *FLASH* therapy
- Solvated electron scavangers (*nitrous oxide and sodium nitrate*) were used to gain mechanistical insight in radiochemical processes





### Modelling studies on FLASH effect and delivery



#### Through chemistry: Dose rate

• Exploration of radiochemical changes under UHDR irradiation - dose rate threshold scaling for different ion types

#### Pencil beam model for delivery





### Work with bachelor students: Imaging methods

#### **PET verification**



Contrast agent and prompt gammas



#### Particle radiography

- Work of CERN summer students:
  - High energy proton radiography by Aurelija Vinke
  - Helium-3 radiography by IIze Baumgarte





## **Paldies!**



## Backup

# Study of the b-fragmentation function at the CMS experiment

- Process through which b quarks produced in high energy collisions transform into a bottom hadron through combination with other quarks and gluons.
- **Fragmentation function:** probability distribution that describes how a b quark eventually fragments into a bottom hadron determined experimentally and parametrized in theoretical models.
- Essential for precision measurements (*CP violation, Higgs boson and top quark properties, new physics searches*).
- Plays significant role in reconstruction and identification of b jets.



### **EPR tasks & other activities**

- Involvement into the assembly and testing of the **Barrel Timing Layer (BTL)**, a thin cylindrical detector for the MIP Timing Detector (MTD). Tasks performed include:
  - Tray insertion tests and rail installations at the BTST (BTL Tracker Support Tube).
  - Thermal and annealing tests on SiPMs (Silicion Photomultiplier Modules).
  - Cooling Tray assembly shifts.
- Assigned the role of **Top Data Quality Management (DQM) contact** for the TOP PAG as part of my EPR tasks. Tasks performed include:
  - Assessing the quality of new data and Monte Carlo campaigns to ensure accuracy and reliability.
  - Identifying issues and investigate causes.
  - Generate reports.
  - Developing and maintaining tools.
- Performed shifts at CMS control room as a Detector Control System (DCS) Technical Shifter.
- Implementing performance analytics scripts for the new **Tier-2 grid site in Latvia** which was inaugurated on *5/06/2024*. Liaison point between the IT engineers in Latvia and the CMS O&C group while on the Long Term Attachment (LTA).



### **Experimental physics responsibilities**





•

•

### **Colour flow and jet pull**

- quarks and gluons carry QCD charge, known as colour (three different colour states r, g, b)
- by "tracking" the colour flow, it is possible to distinguish whether quarks come from colourfull particles (gluons) or colourless particles (e.g. bosons)
- an observable that can be used in distinguishing between the two is called jet pull



:ÉRN







37

arXiv:1911.05090