Straw tracker for FCC-ee experiments

Kevin Nelson USFCC meeting 17 October 2024

Introduction

Momentum resolution is an important requirement for the FCC-ee tracker

$$M_{recoil}^{2} = \left(\sqrt{s} - E_{l\bar{l}}\right)^{2} - p_{l\bar{l}}^{2} = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^{2}$$

- Sensitivity dominated by the $Z \rightarrow \mu\mu$ channel
- Require the track momentum resolution should not be worse than the beam energy spread (~0.16% at 240 GeV)
 - $\sigma_{p_T}/p_T \sim 0.2\%$ at 45 GeV
 - A factor of 5-10 better than the current ATLAS and CMS inner trackers
- Current proposals for FCC-ee experiment inner tracker:
 - CLD: full silicon pixel+strip (TPC under consideration)
 - IDEA/ALLEGRO: silicon pixel + Drift chamber + outer silicon wrapper
- We propose a straw tracker concept in place of drift chamber:
 - Pixel + Straw tracker + Silicon wrapper

Straw tracker: detector concept

• We propose a straw tracker (combined with pixel + silicon wrapper) for an FCC-ee inner tracker:

- Length 4-5m
- O(100) layers
- Straw diameters 1-1.5 cm
- Single straw resolution 100-120 μ m
- 1.2% X_0 in straw tracker
- Detector optimization ongoing.

Discussed today: Geant4/dd4hep simulation Garfield gas simulation Test beam studies Cosmic-ray studies Recent FCC straw tracker workshop 4 m long Vertex: 5 MAPS

Straw tube layout: the WIP detector concept

- 10 super layers
- 10 sublayers per super layer
- Diameter varies 1-1.5 cm
- Order 100,000 tubes
- Put in place of IDEA drift chamber in simulation. **Between vertex detector and** silicon wrapper
 - Can extend chamber to 5m to match ALLEGRO, easier with straw than drift chamber. Eventually we foresee straw may be part of ALLEGRO concept.
- Inner radius: 35.1cm

- Outer radius: 184.2 cm
- Option to alternate axial and stereo layers Silicon wrapper

Dd4hep simulation

• The straw tracker has modular design. Nominal geometry:

- 12 micron thick mylar layer
- 50 microns Aluminium coating
- Wire: 20 microns diameter Tungsten
- No endplate structure added yet. Study $\theta = 90^{\circ}$

Material budget

- Material budget breakdown for individual components
- Negligible contribution from Helium and Aluminum coating. Mostly from Mylar wall.
 - Air between tubes also considered. No glue: we anticipate ultrasonic welding technique.

Kevin Nelson

Using preliminary Geant4 IDEA simulation for comparison

- From: Nicola's <u>talk</u>, slide 42
- We believe significant material was omitted for the analytical calculation (see backup)
- Used 100 μ m drift chamber resolution. We aren't sure about their assumptions for pixel, wrapper.

• Assumptions on resolution for straw:

- Vertex pixel=5 μ m
- Straw=120 μ m
- Silicon wrapper=15 μ m

• Material included:

- From IDEA: Beampipe, vertex detector, silicon wrapper
- From straw: wire, Helium gas, Mylar (12μ m) walls), air between tubes (total 1.2% X_0)
- Using IDEA v03 concept from dd4hep, simply comment out drift chamber and replace with straw

• Straw fully competitive with drift chamber

Simulation in different gas mixtures

- Need to pay attention to the balance between timing resolution and transverse diffusion
- Ar-based gas: high ionization density (~40) clusters/cm) and moderate electron drift velocity 50 μ m/ns (@E~2kV/cm). Mean cluster arrival time separation: ~5 ns.
- He-based gas: lower ionization density (~15) clusters/cm) and 30 μ m/ns (@E~2kV/cm). Mean cluster arrival time separation: ~15 ns.
- Plots are meant to visualize the cluster separation. See backup for drift time spectra. Maximum drift time usually between 100-300 ns

5mm radius tube with 1 bar and 1kV simulat

ted	here

V				
com.	nul	ea.	mecent	

-	0.0	2		>
}				
	·····}		 	
····)	}		 	

Straw tube test studies

• Two ongoing experimental studies:

- Test beam at CERN:
 - Using ATLAS MDT readout electronics (does not record full waveform).
 - Can study resolution, wire centering, dE/dx study via Wilkinson ADC or ToT mode
- Cosmic-ray study in Ann Arbor:
 - Using oscilloscope to read waveform from straw

 - Need 100x gain on top of HV gas gain

• Can study dN/dx method due to full waveform (eventually need read-out electronics with waveform digitization)

Test Beam Studies (CERN)

Two vertical sMDT chambers 0 & 2 (parallel with straws, measuring the X position)

> **Beam direction** (Z direction)

sMDT tubes with HV 2730 V Two horizontal sMDT chambers 1 & 3 (orthogonal to straws, measuring the Y position) 93% Ar, 7% CO2 at 3 bar,

Setup from top view

Straws:

18 tubes are connected to the sMDT DAQ (TDC 8, Channel 6--23)

- 5 mm tubes with HV 1450 V
- 10 mm tubes with HV 1750 V
- Nominal threshold: -28 mV (~3.1 fC)
- 70% Ar, 30% CO2 at \bullet 2 bar

Setup from the side view

- Compare ADC spectra and time spectra (ADC in "Wilkinson ADC" mode. More in backup.)
 - For most of the straw tubes, longer drift time -> larger ADC

Horizontal sMDT chambers

Straw alignment

- Use sMDT tracker to predict the muon track in 3D.
- Start with a nominal alignment and calculate the efficiency of the straw:

 $\epsilon = P(\text{hit on straw tube} | \text{sMDT track through straw tube})$

- Adjust position of the straw to maximize the efficiency
- ~90% efficiency in 10/16 tubes

Kevin Nelson

Cosmic studies (Ann Arbor)

- A cosmic-ray test setup in Ann Arbor
- Using ATLAS drift tubes to reconstruct track in 3D. 2 tracking planes with perpendicular sets of drift tubes.
 - Same sMDT set up as used in test beam studies at CERN.
- Experimental setup:
 - Straw tube HV=1750 V, diameter=2.5cm, Ar:CO2 (93:7) at 1.1 bar
 - ATLAS sMDT HV=2730 V, diameter=1.5cm, Ar:CO2 (93:7) at 3 bar
 - Scintillator size: 20x20 cm
 - 2 straw tubes are read out

Typical muon waveform with cluster observation 200 0 200 400 600 800 1000 1200 1400 1600 1800 Time (ns)

ATLAS sMDT

MDT readout

Drift time spectrum

- Filtering removes noise, allowing low threshold voltage
- Drift time is calculated from the first leading edge crossing the threshold voltage.
- Drift time spectrum is well behaved.
- Plan to modify HGTD amplifier board
 - Create new board to mount on straw prototypes and use CAEN digitizer board to read out all waveforms.
- Further test beam plans:
 - Fermilab (requested for May 2025)
 - CERN sometime 2025

Straw tube drift time spectrum

Additional 100x amplification needed

Straw tracker workshop

- A successful workshop was organized earlier this week in Ann Arbor
- ~35 participants from 20 institutions
 - ~15 remote participants
- Jianming will summarize further at detector concept meeting
 - https://indico.cern.ch/event/1463707/ (Monday 10am EST)

Why a straw tracker workshop?

This workshop intends to bring together experts and interested parties to investigate the feasibility of incorporating a straw tracker into the inner detector. The topics for the workshop will encompass reviews of existing straw trackers and their latest developments, the requirements for a Higgs factory, critical R&D issues, as well as potential layouts for an inner detector that includes a straw tracker.

- for FCC-ee experiments?

• Straw trackers have been used for more than 30 years by many HEP experiments, why do we still need R&D

• New technology to make a thin-wall straw (down to 12 microns) with ultra-sonic welding method (not yet available in the US) • Building a straw tracker with much larger volume is extremely challenging, needs a lot of engineering and prototyping • Using a straw tracker for particle ID will need new electronics development, ML technology for dN/dx measurement

Straw tracker workshop

- Many different experiments represented
 - ATLAS, PANDA, Mu2e, GlueX, NA62, SHIP, DUNE
- Many participants specialized in production of straw tubes
- Lots of experience on straw production, assembly, operation and frontend electronics presented

GlueX straw tracker

Self-supporting straw layers

- glue straws in planar layers with minimal gap together
- reference profile plates define exact straw-straw distance
- pressurized modules show high rigidity

Close-packed, dot-glued straw layers sustain wire tension and reduce bending.

 $3 \times 3 kg$ Pb bricks on top of hexagon modules.

R&D on self-supporting straw

Actual bugs bite holes in Mu2e straw

An investigation found the cause. **Actual Bug**

Boxelder bugs found in the assembly cleanroom

show they could cause hole in straws

Straw used in many experiments

Straw winding

Straw welding

Straw winding

- ATLAS
- LHCb
- PANDA .
- CBM
- COMPASS
- Mu2e
- NA64
- SVD-2
- GLUEX

. .

•

COZY-TOF •

red color- straw tracker created with our participation See Temur's talk

Straw tracker workshop

• Drift chamber experts also well represented

IDEA Drift Chamber

Plan to start the construction of a DCH prototype full lenght, three sectors

Conclusion

Significant interest from the community as showcased in the recent workshop

- Michigan, MPI, MSU, UMass-Amherst, Tufts, Harvard, UCI
- Meetings will be organized by Junjie (Michigan) and Oliver (MPI) and George (BNL).
- All are welcome to join the growing community!

• Synergy with drift chamber:

- Gas, simulation, electronics
- Significant contributions from drift chamber experts at the straw tracker workshop

• Work currently underway:

dd4hep/Geant4 simulation, Garfield simulation, test beam, cosmic-ray studies

• Next steps:

- Add stereo angle in dd4hep geometry, study performance outside of only $\theta = 90^{\circ}$, optimize layout
- Continue Garfield simulation and study PID prospects in different gasses
- Build new prototype with ~25 straws
- With new prototype and readout electronics, perform test beam and cosmic ray studies through 2025

• Modify amplifier and use CAEN waveform digitizer to record waveforms. Develop fast algorithms for cluster finding.

Backup

Straw tracker at Michigan

Straw tracker at Michigan

A straw tracker at the UM ATLAS muon detector construction lab

MPI plans to build a straw tracker this fall also

- Only three wires shorten
- Gas flow tested for all straws
- Cables remade so that they can be inserted into the ATLAS MDT hedgehog cards
- MDT mezz, CSM and miniDAQ system ready
- Cosmic ray studies and potential test beam studies at Fermilab

Cluster counting (dN/dx)

- Count number of clusters produced along the track path
- Estimate the resolution to be $\sigma = N_{clusters}^{-0.5}$
 - With n=120 and 15 clusters per sample, then we have N_{clusters}=1800 and $\sigma = 2.3\%$
 - If we assume a cluster-finding efficiency of 80%, we will have $\sigma = 2.6\%$
 - Roughly ×2 better than the truncated mean method
 - Not a single experiment has implemented this method and used it online yet
 - Lots of studies performed by the IDEA community

N. De Filippis

- Finding electron peaks
- Clustering electrons to clusters

CLD and IDEA concepts

Dd4hep simulation

• The straw tracker has modular design. Nominal geometry:

- 12 micron thick mylar layer
- Tube size varies for each multilayer. 10 multilayers total. 10 layers per multilayer.

Material budget

- Material budget breakdown for individual components
- Negligible contribution from Helium and Aluminum coating. Mostly from Mylar wall.

He

Kevin Nelson

Material budget

- Nominal geometry as described has 1.2% radiation length at $\theta = 90^{\circ}$
- Spikes are from events where the muon passes through the Tungsten wire
- Note: no endplate simulation

Kevin Nelson

Comparison with other detector concepts

 Showing CLD and IDEA concepts along with our concept: IDEA but with drift chamber replaced with straw tracker

• Theoretical calculation of multiple scattering

- Assuming relatively even material per layer
- Assuming relativistic muons ($\beta = 1$)

$$\left(\frac{\sigma_{p_T}}{p_T}\right)_{\text{scat}} = \frac{0.0136}{0.3L_p B} \sqrt{x/X_0} = 0.15\%$$

• Depending on number of straw tubes this could change by 20-30%. Probably not lower than 0.1%

Tracking

The simplified simulation we developed performs tracking in 2D

- Simulate monochromatic muons initially pointed in the positive y dir.
- Vary muon energy to measure resolution as a function of p_T at $\theta = 90^o$

Rather than 6 parameters only 4 are required

- (x_0, y_0) initial position
- Initial p_T
- Initial angle ψ_0
- Excluded for 2D tracking: z_0 , θ

• Intrinsic detector resolution:

- Smear truth hits (from Geant4) in various detector subsystems by gaussian distributions:
 - Straw tube: 120 microns
 - Pixel: 5 microns
 - Silicon wrapper: 15 microns

- Configuration using vertex detector + straw tubes (exclude silicon wrapper)
- Individual gaussian fit validation shown. Each histogram is 1000 monochromatic muons

Kevin Nelson

- Configuration using vertex detector + straw tubes + silicon wrapper
- Individual gaussian fit validation shown. Each histogram is 1000 monochromatic muons

- Compare straw tube to other detector concepts
- There are (tiny) error bars on the straw points from the statistical error on the gaussian fit. No other sources of error considered.
- Straw MS is from analytical calculation. **MS** included in simulation.
- Straw tube geometry is not yet optimized!
- Assumptions on resolution:
 - Vertex pixel=5 μ m
 - Straw=120 μ m
 - Silicon wrapper=15 μ m

Gas simulation with Garfield

Ongoing Garfield simulation:

- Ionization statistics in several gas mixtures
- Electron and ion transportation properties
- Signal induction and timing structure
- Provide essential inputs for the gas optimization and dE/dx(dN/dx) measurement for PID
- 1.5 meters of Argon = 1.5% X_0

Electron drift velocity vs. e-field

Simulated ionizations created by a muon track and primary electron drift towards wire

Typical drift tube gas Ar-93-CO2-7

Low-z gas He-90-iC4H10-10

Gas simulation with Garfield

Number of electrons per Cluster

34

Simulation done for 4 GeV muon in a 10 mm-diameter straw

	CH_4	Ar	He	CO ₂
k				
1	78.6	65.6	76.60	72.50
2	12.0	15.0	12.50	14.00
3	3.4	6.4	4.60	4.20
4	1.6	3.5	2.0	2.20
5	0.95	2.25	1.2	1.40
6	0.60	1.55	0.75	1.00
7	0.44	1.05	0.50	0.75
8	0.34	0.81	0.36	0.55
9	0.27	0.61	0.25	0.46
10	0.21	0.49	0.19	0.38
11	0.17	0.39	0.14	0.34
12	0.13	0.30	0.10	0.28
13	0.10	0.25	0.08	0.24
14	0.08	0.20	0.06	0.20
15	0.06	0.16	0.048	0.16
16	(0.050)	0.12	(0.043)	0.12
17	(0.042)	0.095	(0.038)	0.09
18	(0.037)	0.075	(0.034)	(0.064)
19	(0.033)	(0.063)	(0.030)	(0.048)
≥ 20	$(11.9/k^2)$	$(21.6/k^2)$	$(10.9/k^2)$	$(14.9/k^2)$

Num of electrons generated per cluster

Simulation of the drift time spectrum

• Simulation of the straw tube drift time spectrum (convolution of earliest cluster arrival time and the amplifier response)

- Drift time spans 100-300 ns, comparable to ATLAS monitored drift tubes
- ~50% longer drift time in He-based gas compared with Ar-based gas (1 bar)
- Drift time depends on the straw radius, gas pressure, and high voltage applied

Straw drift time spectra

• Two typical straw time spectra (more spectra in backup)

- Ch7 is a 10mm tube and Ch18 is a 5mm tube (diameter)
- Additional steps in the leading and falling edges of Ch7:
 - Sense wire is not located at the tube center

Kevin Nelson

Straw ADC spectra

- Compare ADC spectra and time spectra (ADC in "Wilkinson ADC" mode. More in backup.)
 - For most of the straw tubes, longer drift time -> larger ADC
- Short drift time events may also have large ADC
- Weird Ch6: longer drift time but small ADC

Straw alignment

- Alignment between straws and sMDT tracker in progress.
- Extrapolate sMDT track to straws and extract the x position on the straws
- Compare x position to drift time to measure straw position. Also gives a sense of the r(t) relation.

Ch 7

Time spectra of straw

Kevin Nelson

ADC spectra of straw

Kevin Nelson

Waveform filtering

FFT

- Low frequency components consistent with muon signal.
- Remove high frequency noise with **FFT** and frequency cut

