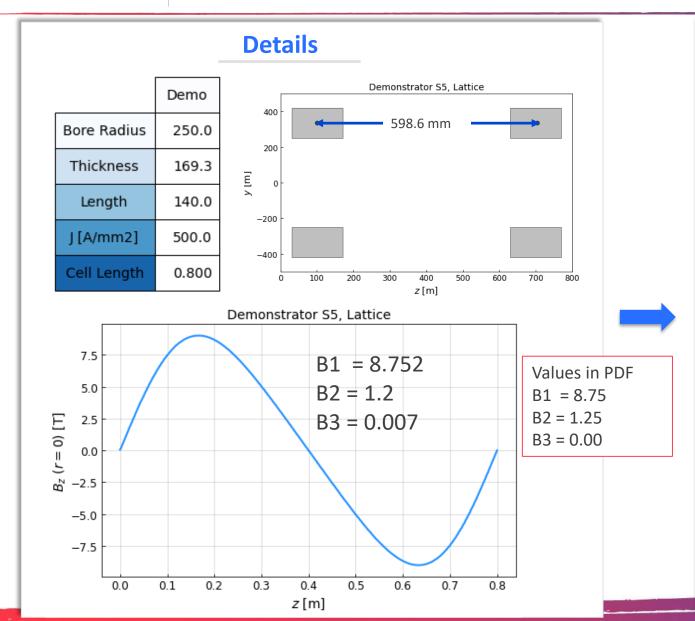
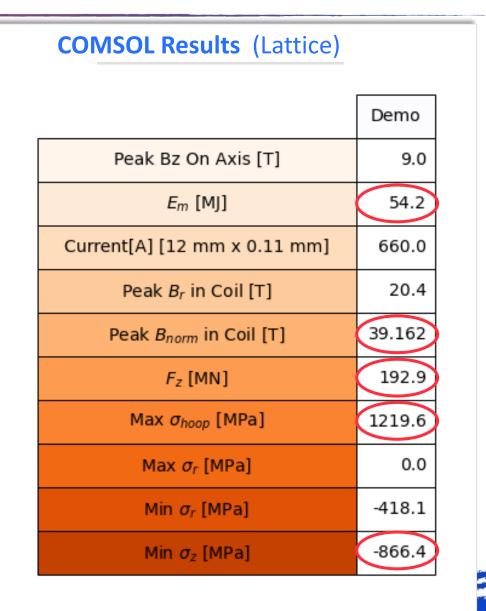
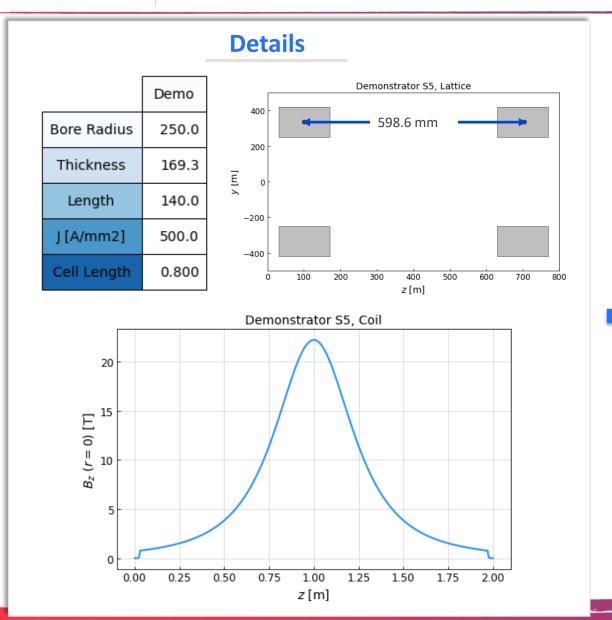
Initial Evaluations of Demonstrator Geometry, 2024

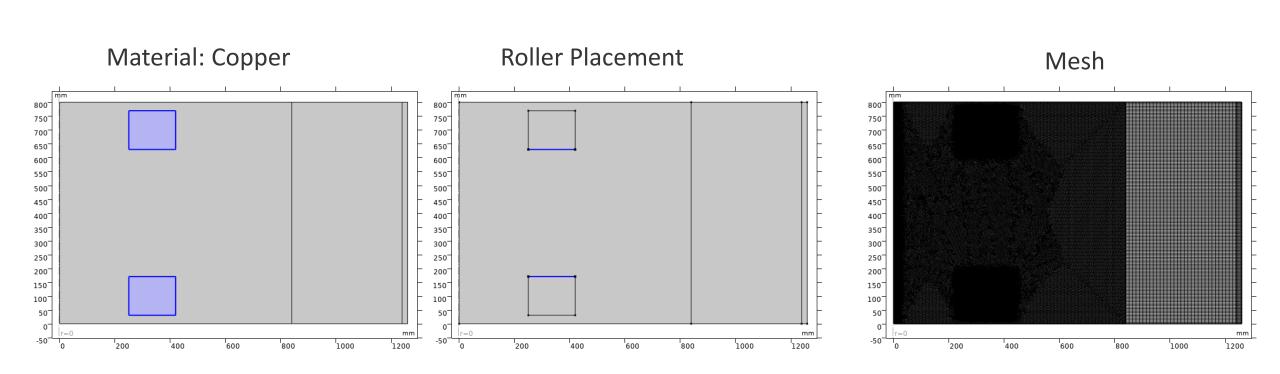
S. Fabbri, G. Scarantino, M. Statera, L. Bottura



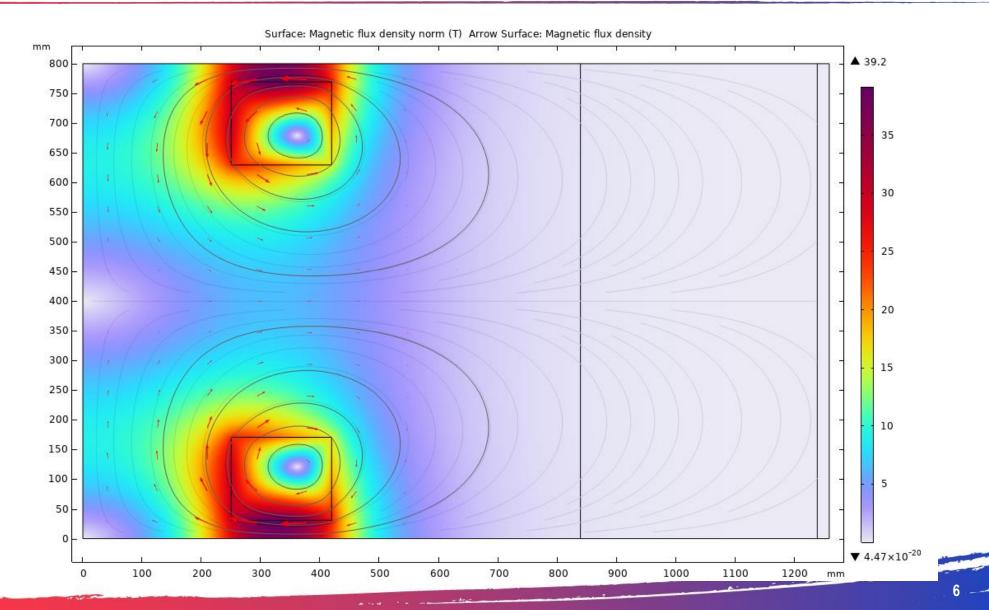

Analysis of Desired Configuration (June 2024)


MInternational UON Collider Collaboration

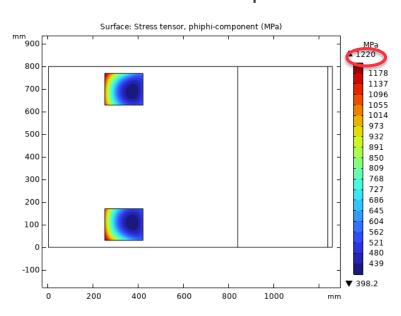
MuCol



Demonstrator – Details and Results from COMSOL

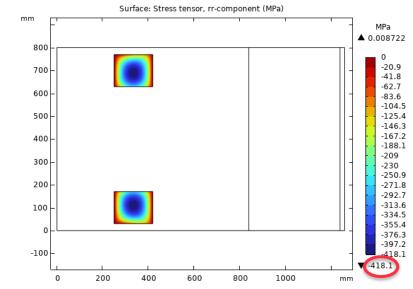

СС	OMSOL Results (Single	e Coil)
		Demo
	Peak Bz On Axis [T]	22.2
	<i>E</i> _m [MJ]	49.9
	Peak <i>B_r</i> in Coil [T]	25.0
	Peak Bnorm in Coil [T]	40.0
	Max σ_{hoop} [MPa]	2493.090
	Max σ_r [MPa]	0.0
	Min <i>o_r</i> [MPa]	-444.1
	Min <i>o_z</i> [MPa]	-463.1

-10

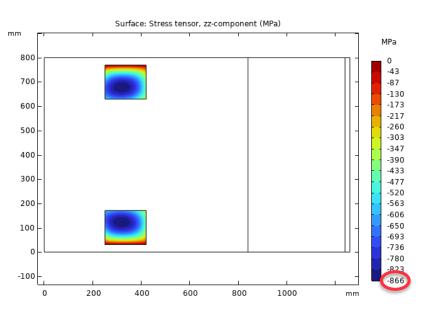


COMSOL Analysis – Mechanics

Hoop Stress 398 to 1220 Mpa


MuCo

MInternational UON Collider Collaboration CERN


Radial Stress

0 to -418 MPa

Longitudinal Stress

0 to -866 MPa

-1- -

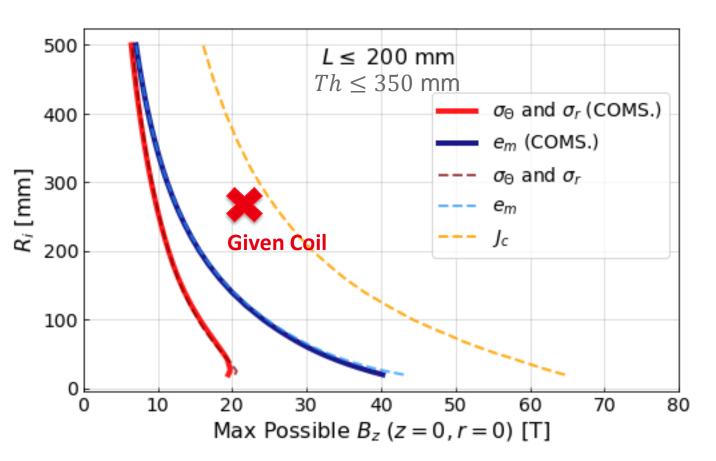
Analysis of Desired Configuration (June 2024)

Guiding Design Parameters

- σ_{θ} : hoop stress
- σ_r : radial stress
- *e_m*: magnetic energy density
- J_c: critical current density

Example limits

- $\sigma_{ heta} \leq 300 \text{ MPa}$
- $\sigma_r \leq 20$ MPa (Tensile)
- $e_m \leq 150 \text{ MJ/m3}$
- J_c : HTS at $T_{op} = 20$ K and 2.5 K margin (Fujikura FESC-SCH tape)


Other considerations (numerical)

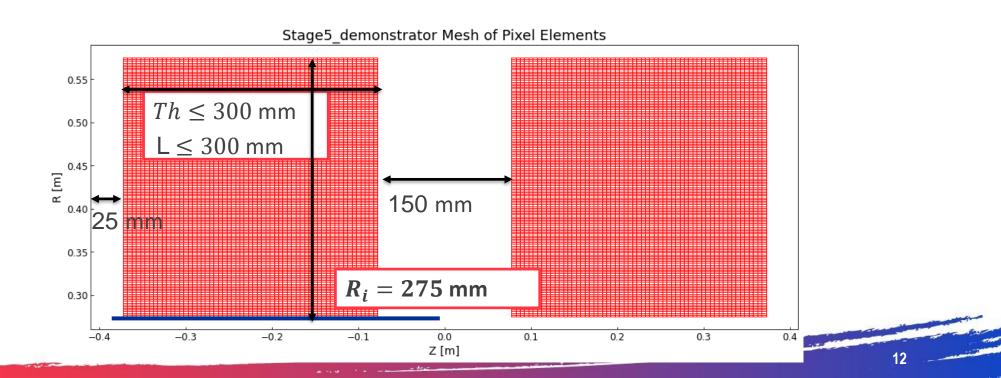
Forces

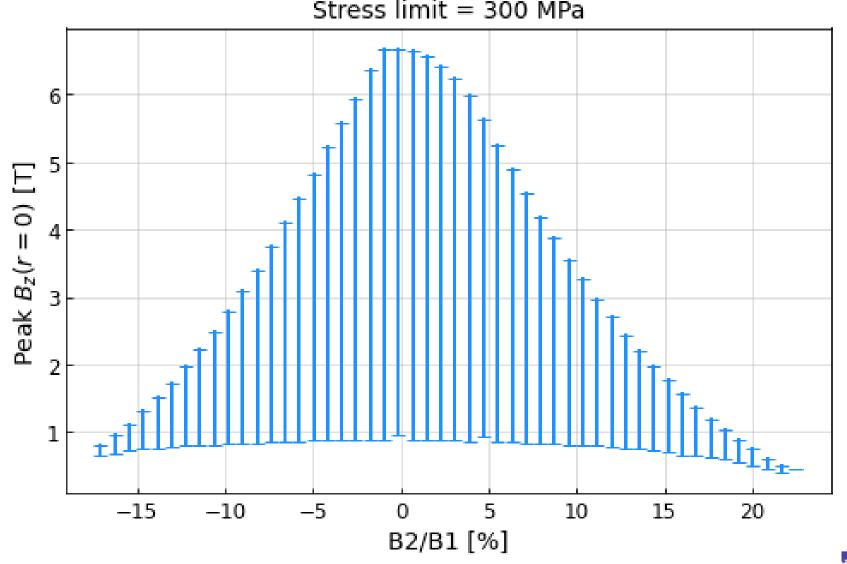
A-B Plot, Single Solenoid

- Over a fine interval of bore radius, scan solenoids of different length and thickness and compute
 - $\sigma_{\theta}, \sigma_r$: hoop stress, radial stress
 - *e_m*: magnetic energy density
 - *J_c*: critical current density
- 2. At each bore radius, find the maximum achievable peak field on axis ($B_z(z = 0, r = 0)$), for
 - $\sigma_{ heta} \leq 300 \text{ MPa}$
 - $\sigma_r \leq 20$ MPa (Tensile)
 - $e_m \leq 150 \text{ MJ/m3}$
 - J_c : HTS at $T_{op} = 20$ K and 2.5 K margin (Fujikura FESC-SCH tape)

Solid Curves: COMSOL (COMSOL) Dashed curves: Semi-analytic

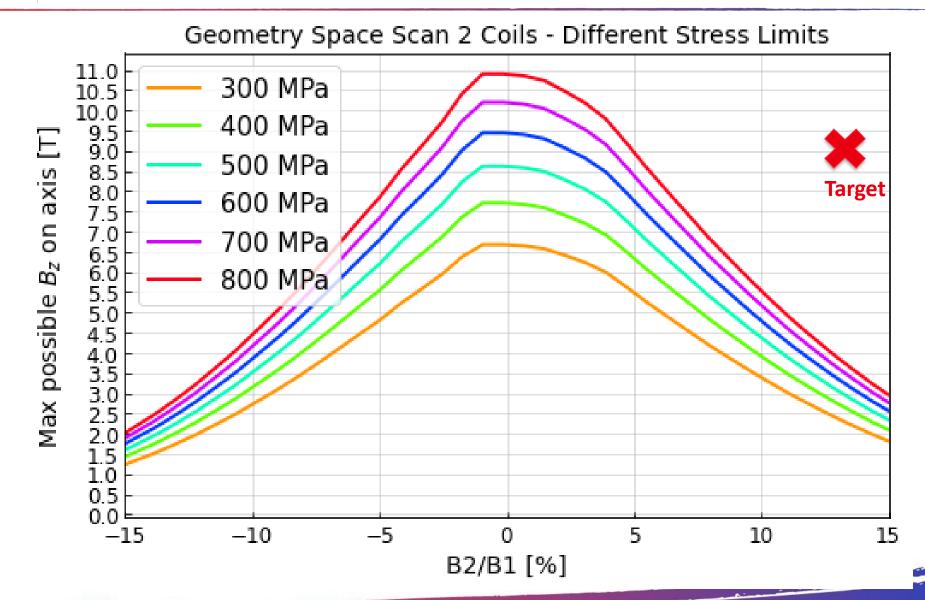
A-B Plot, 2-4 Solenoids in a Lattice


=1

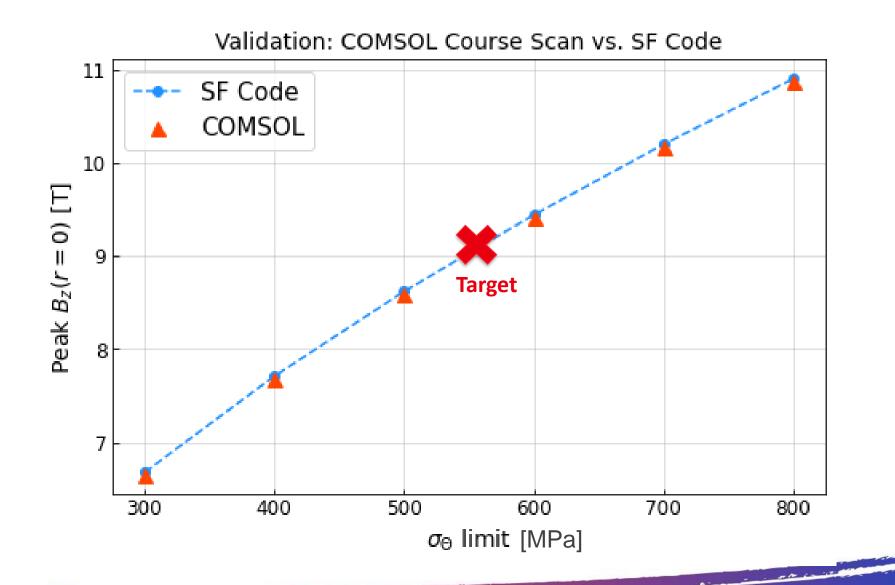

1. For the desired peak field, what harmonics are possible $(R_i = 275 \text{ mm}, L_{cell} = 0.8 \text{ m})$

Scan space:

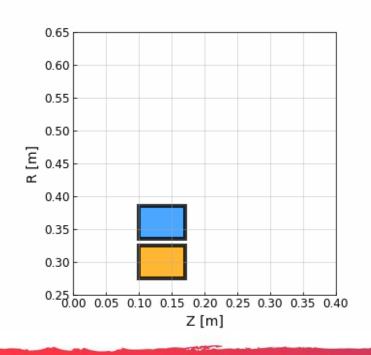
- 50 mm gap between coils sides
- 150 mm gap in center **
- $R_i = 275 \text{ mm}$
- → **144k** geometries (dr = 2 mm, dz = 5 mm)

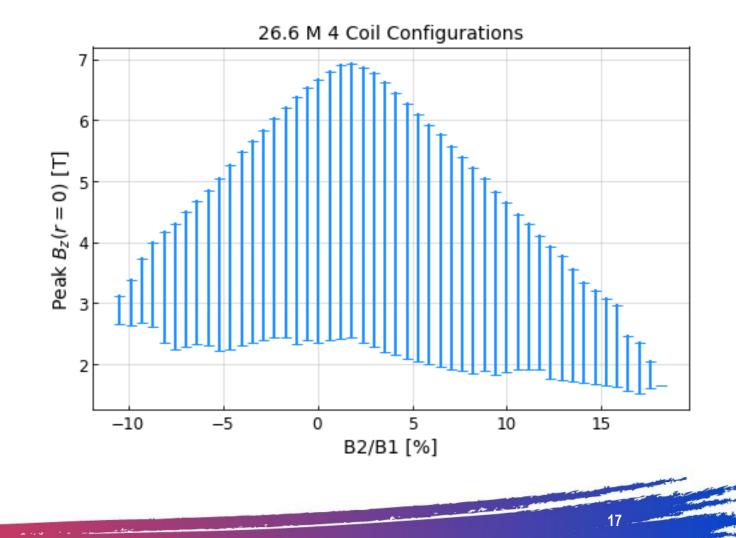


.13


Stress limit = 300 MPa

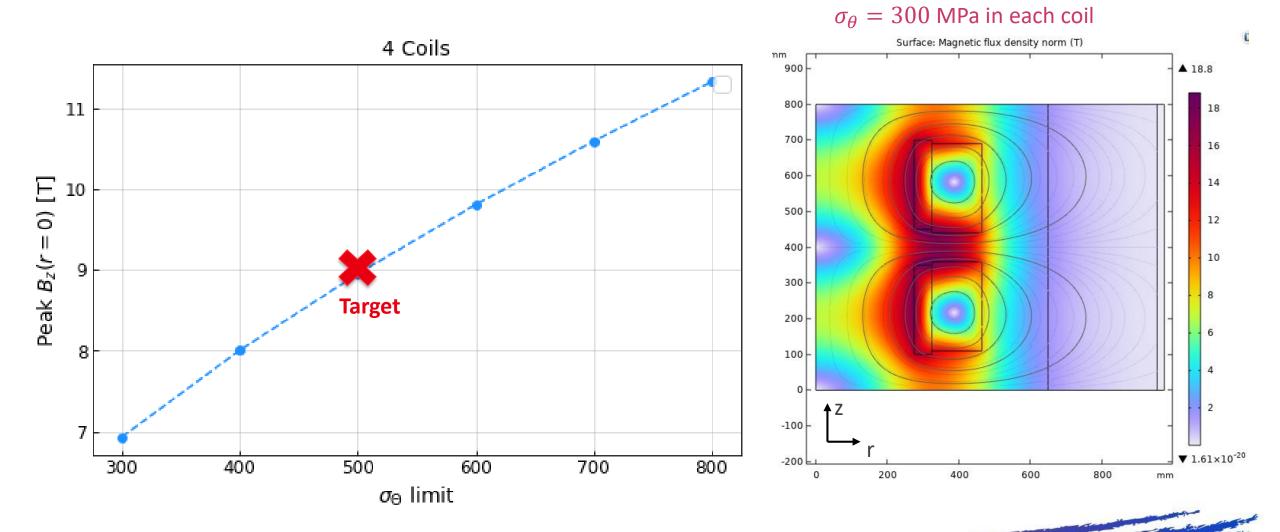
14 -----




15 ---

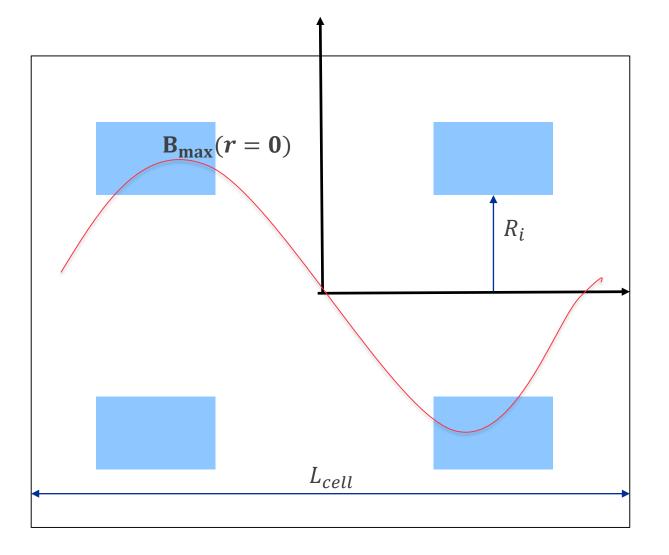
Analysis – 4 Coils

- *Gap Waveguide = 200 mm*
- $60 mm \le L \le 250 mm$
- $50 mm \le Th \le 200 mm$
- Coil 2: 275 $mm \le R_i \le 375 mm$
- Coil 1: $R_i = 275 mm$



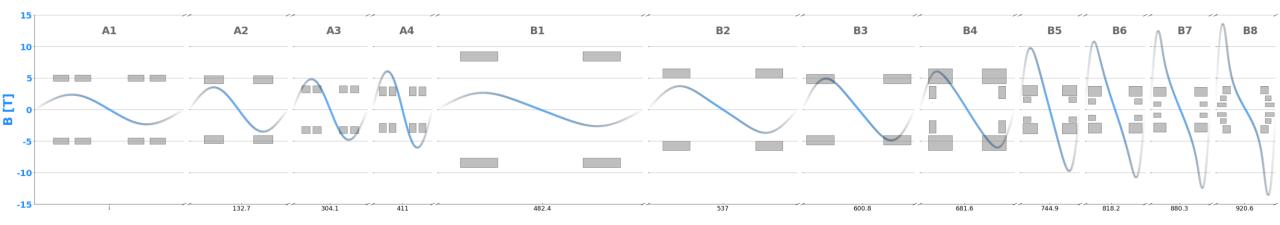
4 Coil Scan Conclusions (geometry creating highest field on axis)

CÉRN


MInternational UON Collider Collaboration

MuCol

18


To get towards desired $\mathbf{B}_{\max}(r=0)$

- **1**. Reduce R_i (design change)
- 2. Increase the cell length ?
- 3. ... consider pre-stress compression, coils treated as system (lower stresses) ...Break coils into 2 ? (same radii, diff radii

Or

• reduce $\mathbf{B}_{\max}(r=0)$

	A1-1	A2-1	A3-1	A4-1	B1-1	B2-1	B3-1	B4-1	B4-2	B5-1	B5-2	B6-1	B6-2	B7-1	B7-2	B8-1	B8-2	B8-3
Bore Radius [mm]	450	410	270	220	770	500	410	175	410	113	217	84	215	50	210	45	140	250
Thickness [mm]	100	130	110	140	150	150	150	200	240	88	165	92	160	74	145	65	80	120
Length [mm]	210	260	110	90	500	360	370	92	320	100	196	100	177	100	170	120	80	100
J [A/mm2]	63.2	126.6	165.0	195.0	69.8	90.0	123.0	94.0	70.3	157.0	168.0	185.0	155.1	198.0	155.0	220.0	135.0	153.0
Cell Length [m]	2.0	1.3	1.0	0.8	2.8	2.0	1.5	1.270		0.806		0.806		0.806		0.806		
N Cells	66	130	107	88	20	32	54	50		91		77		50		61		

20 -----

US MAP parameters

		A1-1	A2-1	A3-1	A4-1	B1-1	B2-1	B3-1	B4-1	B4-2	B5-1	B5-2	B6-1	B6-2	B7-1	B7-2	B8-1	B8-2	B8-3
Bore Rad	lius [mm]	450	410	270	220	770	500	410	175	410	113	217	84	215	50	210	45	140	250
Thickne	ss [mm]	100	130	110	140	150	150	150	200	240	88	165	92	160	74	145	65	80	120
Length [mm]		210	260	110	90	500	360	370	92	320	100	196	100	177	100	170	120	80	100
J [A/mm2]		63.2	126.6	165.0	195.0	69.8	90.0	123.0	94.0	70.3	157.0	168.0	185.0	155.1	198.0	155.0	220.0	135.0	153.0
Cell Length [m]		2.0	1.3	1.0	0.8	2.8	2.0	1.5	1.270		0.806		0.806		0.806		0.806		
N Cells		66	130	107	88	20	32	54	50		91		77		50		61		
	A1	A2	A2 /		A	4	B1		B2	B3		B4	В	5	B6		B7	B8	
B1	-2.323	-3.4	80	-4.792	2 -6.	056	-2.56	5 -	3.537	-4.7	36	-5.650	9.	058	-9.03	4 -	8.960	-8.6	58
B2/B1	-0.001	-0.0	001	-0.001	L -0.	-0.002		6	0.136	0.1	.42	0.216	i 0.	240	0.37	0	0.505	0.6	48
B3/B1	-0.014	-0.0	011	-0.005	5 -0.	002	-0.01	.4 -	0.013	0.0	02	0.036	i 0.	041	0.10	1	0.192	0.2	92
B4/B1	-0.000	0 -0.000 -0.001		L -0.	-0.001		2 -	0.004	-0.0	00	0 -0.006		001	0.01	.0	0.025	0.0	71	
B5/B1	-0.002	.002 -0.000		-0.001	1 -0.001		-0.000		0.000	0.0	000	00 -0.008		003	-0.00	8 -(0.027	-0.0	08

IMCC New Optics Version 2.0 June 2024

Total Number of Solenoids in 1 chain: 3054 | **Total Length**: 850.3 m **On axis field** from 2.6 T to 17.9 T (in Lattice)

	A1-1	A2-1	A3-1	A4-1	B1-1	B2-1	B3-1	B4-1	B4-2	B5-1	B5-2	B6-1	B6-2	B6-3	B7-1	B7-2	B7-3	B8-1	B8-2	B8-3	B9-1	B9-2	B9-3	B10-1	B10-2	B10-3
Bore Radius	400	400	200	190	400	400	400	175	410	110	230	80	160	220	50	130	220	30	100	210	25	85	210	25	85	195
Thickness	150	150	125	125	200	200	200	200	240	80	170	70	50	100	70	80	100	60	100	105	50	100	105	50	100	105
Length	287	233	245	217	146	194	277	91	277	70	274	105	81	196	89	84	213	87	78	223	96	100	225	75	89	168
J [A/mm2]	57.6	149.5	131.5	193.2	96.9	102.1	127.9	88.5	153.6	179.6	154.0	214.4	211.5	212.7	183.3	153.9	210.3	193.7	202.1	212.8	256.4	88.5	204.9	326.8	146.1	207.8
Cell Length	1.8	1.2	0.8	0.7	2.3	1.8	1.4	1.100		0.800		0.700			0.700			0.650			0.650			0.630		
N Cells	58	89	81	124	24	34	54	61		55		55			51			69			53			49		

	A1	A2	A3	A4	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
B1	-2.45	-3.90	-5.86	-7.41	-2.82	-3.71	-4.93	-6.99	-9.22	-10.72	-10.89	-11.97	-11.72	-11.92
B2/B1 [%]	-0.22	-0.12	-1.50	-0.71	9.85	7.43	11.49	12.14	14.73	27.67	33.48	41.68	48.53	52.72
B3/B1 [%]	-4.30	-0.81	-0.43	-0.31	-9.32	-4.22	-0.23	3.04	4.72	8.69	13.78	20.86	27.75	30.87
B4/B1 [%]	-0.04	-0.04	-0.09	-0.08	-1.74	-0.62	-0.14	0.43	0.89	1.19	2.37	6.11	9.53	10.30
B5/B1 [%]	0.04	-0.03	-0.08	-0.07	0.64	0.07	-0.04	-0.10	-0.13	-0.28	-1.00	-0.16	0.76	-0.33

-

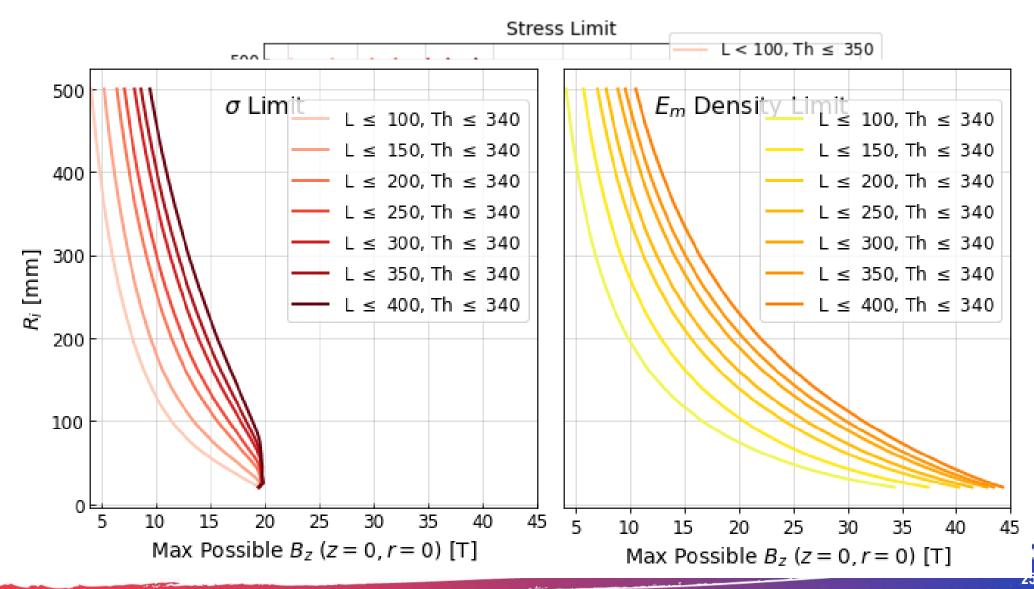
-10

22

IMCC New Optics Version 2.0 June 2024

Total Number of Solenoids in 1 chain: 3054 | **Total Length**: 850.3 m **On axis field** from 2.6 T to 17.9 T (in Lattice)

																									· '	
Thickness	150	150	125	125	200	200	200	200	240	80	170	70	50	100	70	80	100	60	100	105	50	100	105	50	100	105
Length	287	233	245	217	146	194	277	91	277	70	274	105	81	196	89	84	213	87	78	223	96	100	225	75	89	168
J [A/mm2]	57.6	149.5	131.5	193.2	96.9	102.1	127.9	88.5	153.6	179.6	154.0	214.4	211.5	212.7	183.3	153.9	210.3	193.7	202.1	212.8	256.4	88.5	204.9	326.8	146.1	207.8
Cell Length	1.8	1.2	0.8	0.7	2.3	1.8	1.4	1.100		0.800		0.700			0.700			0.650			0.650			0.630		
N Cells	58	89	81	124	24	34	54	61		55		55			51			69			53			49		


23

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Progress in the Design of Magnets for a Muon Colliders, IPAC 2024 / S. Fabbri/ CERN

