# **Searches for New Physics in the LHC era**

Dibyashree Sengupta

INFN, Laboratori Nazionali di Frascati, Italy



#### **Research Seminar @ University of Milan, Milan, Italy**

October 07, 2024

### **The Standard Model**



# **Drawbacks of the Standard Model**

The Higgs mass instability problem in the Electroweak (EW) sector



Masses of Neutrino

M. Bauer et. al., Lect.Notes Phys. (2019) A. Hook, PoS TASI2018 S.P. Martin, Adv.Ser.Direct.High Energy Phys. (2010) V. D. Barger et.al., Collider Physics (1996)



Higgs Mass Instability Problem

Strong CP Problem

**Dark Matter** 

Axion quality problem

Masses of Neutrinos

























Higgs Mass Instability Problem

Strong CP Problem

Dark Matter

Axion quality problem

Masses of Neutrinos

TYPE-II, TYPE-III SEESAW MODEL, GEORGI MACHACEK MODEL





### **A BSM Scenario: Supersymmetry (SUSY)**

SUSY = SM + Superpartner with spin = spin(SM) ± 1/2 --> MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)

H. Baer et. al., Cambridge University Press, 2006. S.P. Martin, Adv.Ser.Direct.High Energy Phys. (2010)

# A BSM Scenario: Supersymmetry (SUSY)

SUSY = SM + Superpartner with spin = spin(SM)  $\pm$  1/2 ---

MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)



H. Baer et. al., Cambridge University Press, 2006. S.P. Martin, Adv.Ser.Direct.High Energy Phys. (2010)

# A BSM Scenario: Supersymmetry (SUSY)

SUSY = SM + Superpartner with spin = spin(SM)  $\pm$  1/2 -

MINIMAL SUPERSYMMETRIC STANDARD MODEL (MSSM)



#### Main Motivation: Cancellation of Quadratic Divergence in Higgs Mass



Quadratic divergences must be canceled to stabilize the Higgs mass in the ultraviolet complete theory

H. Baer et. al., Cambridge University Press, 2006. S.P. Martin, Adv.Ser.Direct.High Energy Phys. (2010)



| No SPARTICLES yet!                                                   |
|----------------------------------------------------------------------|
| $m_{sparticles} \gg m_{SMparticles}$                                 |
| LHC Limits : $m_{	ilde{g}} > 2.2  TeV$ , $m_{	ilde{t}_1} > 1.1  TeV$ |





An Observable  $\mathcal{O}$  is natural if all independent contributions to  $\mathcal{O}$  are comparable to or less than  $\mathcal{O}$ .







H. Baer et. al., Cambridge University Press, 2006.

#### $\Delta_{\text{EW}} < 30$ ?

# $\Delta_{EW}$ < 30 $\implies$ Anthropic requirements needed to sustain life

#### $\Delta_{\rm EW} < 30$ ?



V. Agrawal et. al. Phys. Rev. D 57, 5480

 $\Delta_{\rm EW} < 30$ ?



V. Agrawal et. al. Phys. Rev. D 57, 5480

 $\Delta_{\rm EW} < 30$ ?



$$\Delta_{EW} = 30 \implies 4 \times m_Z^{OU}$$

V. Agrawal et. al. Phys. Rev. D 57, 5480

# Solutions to the SUSY $\mu$ problem

| model                    | SUSY µ                            | Strong CP | AQP | see-saw | model          | SUSY u                                | Strong CP    | AOP                        | see-saw     |
|--------------------------|-----------------------------------|-----------|-----|---------|----------------|---------------------------------------|--------------|----------------------------|-------------|
| GM                       | small $\lambda_{\mu}$             | Х         |     | SNSS    | U(1)' (HPT)    | small )                               | y            |                            | hRPV        |
| CM                       | small $\lambda_{\mu}$             | Х         |     | SNSS    |                |                                       | /            | <u>ົ</u> ງ                 |             |
| R-sym                    | $(v_i/m_P)^{n_i}$                 | Х         | ?   | SNSS    | <u>KN</u>      | $v_{PQ} < m_{hidder}$                 | n V          |                            | <u>SNSS</u> |
| $\mathbb{Z}^R_{\Lambda}$ | small $\lambda_{\mu}$             | Х         |     | SNSS    | CKN            | $\Lambda < \Lambda_h$                 |              | ?                          | SNSS        |
| Instanton                | small $e^{-S_{cl}}$               | X         |     | SNSS    | BK/EWK         | $\lambda_{\mu} \sim 10^{-10}$         |              | ?                          | SNSS        |
| G <sub>2</sub> MSSM      | $\langle S_i \rangle / m_P \ll 1$ | Х         |     | SNSS    | HFD            | $v_{PQ} < m_{hidder}$                 | n V          |                            | SNSS        |
| NMSSM                    | small $\lambda_{\mu}$             | Х         |     | SNSS    | MSY/CCK/SPM    | v <sub>PQ</sub> < m <sub>hidder</sub> | n V          | Х                          | RadSS       |
| nMSSM                    | small $\lambda_{\mu}$             | Х         |     | SNSS    | CCL            | small $\lambda_{\mu}$                 |              |                            | several     |
| $\mu\nu SSM$             | small $\lambda_{\mu}$             | Х         |     | bRPV    | MBGW           | small $\lambda_{\mu}$                 |              | <b>7</b> .00               | SNSS        |
| U(1)' (CDEEL)            | small $\lambda_{\mu}$             | Х         |     | SNSS    |                |                                       | V            | <b>–</b> 22<br><b>–</b> 78 | 01100       |
| sMSSM                    | small $\lambda_{\mu}$             | Х         |     | SNSS    | Hybrid CCK/SPM | small $\lambda_{\mu}$                 | $\checkmark$ | $L_{24}^{10}$              | 5N 55       |

# Solutions to the SUSY $\mu$ problem

| model                    | SUSY µ                            | Strong CP | AQP | see-saw | model           | SUSY µ                                | Strong CP    | AQP               | see-saw |
|--------------------------|-----------------------------------|-----------|-----|---------|-----------------|---------------------------------------|--------------|-------------------|---------|
| GM                       | small $\lambda_{\mu}$             | Х         |     | SNSS    | U(1)' (HPT)     | small $\lambda_{\mu}$                 | X            |                   | hRPV    |
| СМ                       | small $\lambda_{\mu}$             | Х         |     | SNSS    |                 |                                       | /            | <u></u> ე         | CNCC    |
| R-sym                    | $(v_i/m_P)^{n_i}$                 | Х         | ?   | SNSS    | <u> </u>        | VPQ < Mhidder                         | n V          | •                 |         |
| $\mathbb{Z}^R_{\Lambda}$ | small $\lambda_{\mu}$             | X         |     | SNSS    | CKN             | $\Lambda < \Lambda_h$                 |              | ?                 | SNSS    |
| Instanton                | small $e^{-S_{cl}}$               | Х         |     | SNSS    | BK/EWK          | $\lambda_{\mu} \sim 10^{-10}$         |              | ?                 | SNSS    |
| $G_2MSSM$                | $\langle S_i \rangle / m_P \ll 1$ | Х         |     | SNSS    | HFD             | $v_{PQ} < m_{hidder}$                 | n V          |                   | SNSS    |
| NMSSM                    | small $\lambda_{\mu}$             | Х         |     | SNSS    | MSY/CCK/SPM     | v <sub>PQ</sub> < m <sub>hidder</sub> | n $$         | Х                 | RadSS   |
| nMSSM                    | small $\lambda_{\mu}$             | Х         |     | SNSS    | CCL             | small $\lambda_{\mu}$                 |              |                   | several |
| $\mu\nu$ SSM             | small $\lambda_{\mu}$             | Х         |     | bRPV    | MBGW            | small $\lambda_{\mu}$                 | <br>_/       | <b>Z</b> 222      | SNSS    |
| U(1)' (CDEEL)            | small $\lambda_{\mu}$             | Х         |     | SNSS    | Hubrid COV /QDM | amall )                               | V            | <u>–22</u><br>7R  | CNCC    |
| sMSSM                    | small $\lambda_{\mu}$             | Х         |     | SNSS    | nybria UUK/SPM  | $ $ small $\lambda_{\mu}$             | $\checkmark$ | $\mathbf{L}_{24}$ | 5000    |

#### **Supersymmetry Breaking**



#### **Supersymmetry Breaking**



#### SUSY BREAKING EFFECTS MEDIATED TO VISIBLE SECTOR VIA:



#### **Typical Mass Spectra of Natural SUSY Models**



H. Baer, V. Barger, S. Salam, D.S. and K. Sinha, Eur. Phys. J.ST 229 (2020) 21, 3085-3141

#### **Dark Matter in SUSY**

 $\Delta_{\rm EW} < 30 \& 122 < m_h < 128 {\rm GeV}$ 



Dark matter = LSP from RPC SUSY+Axion

H. Baer, V. Barger, D. S., and X. Tata, Eur. Phys. J. C 78 (2018) 10, 838

# **Strong CP Problem and its Solution**

#### The Strong CP Problem



# **Strong CP Problem and its Solution**

#### The Strong CP Problem



#### The Peccei-Quinn Solution

Adding axion a and a coupling  $f_a$  to the SM  $\longrightarrow \mathcal{L} \supset (a/f_a + \overline{\Theta}) \frac{1}{32\pi^2} F\tilde{F}$ . Axion follows an anomalous symmetry  $(U(1)_{PQ})$ :  $a \rightarrow a + \alpha f_a \qquad \overline{\theta} \rightarrow \overline{\theta} - \alpha$ Axion Potential:  $V = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2\left(\frac{a}{2f_a} + \frac{\overline{\theta}}{2}\right)}$ .  $V \rightarrow V_{min}$  when  $\langle a \rangle = -\overline{\theta} f_a$ Neutron electric dipole moment  $\propto \frac{a}{f_a} + \overline{\theta} \longrightarrow 0$ 

#### R. D. Peccei et. al., Phys. Rev. Lett. (1977) A. Hook, PoS TASI2018

# **Axion Quality Problem and its Solution**

In this Letter we make the simple observation that the existence of higherdimension symmetry-violating operators expected to be induced at the Planck scale by quantum-gravity effects spoils the Peccei-Quinn solution to the strong-CP problem. Generally, the explicit Planck-scale symmetry-violating effects will favor a minimum of the potential at a value  $\bar{\theta} \neq 0$ . In order for the Peccei-Quinn

M. Kamionkowski et. al. Phys. Lett. B 282 (1992) 137
# **Axion Quality Problem and its Solution**

In this Letter we make the simple observation that the existence of higherdimension symmetry-violating operators expected to be induced at the Planck scale by quantum-gravity effects spoils the Peccei-Quinn solution to the strong-CP problem. Generally, the explicit Planck-scale symmetry-violating effects will favor a minim value  $\bar{\theta} \neq 0$ . In order for the Peccei-Quinn

> Harmless if suppressed by at least 1/m<sup>§</sup>

M. Kamionkowski et. al. Phys. Lett. B 282 (1992) 137

# **Axion Quality Problem and its Solution**

In this Letter we make the simple observation that the existence of higherdimension symmetry-violating operators expected to be induced at the Planck scale by quantum-gravity effects spoils the Peccei-Quinn solution to the strong-CP problem. Generally, the explicit Planck-scale symmetry-violating effects will favor a miniv  $value \ \bar{\theta} \neq 0$ . In order for the Peccei-Quinn

> Harmless if suppressed by at least 1/m<sup>§</sup>

M. Kamionkowski et. al. Phys. Lett. B 282 (1992) 137

#### Solution to Axion quality problem



Replace U(1)<sub>PQ</sub> global symmetry by a discrete symmetry as the fundamental symmetry and U(1)<sub>PQ</sub> arises accidentally from that discrete symmetry

proposed by K.S. Babu, I. Gogoladze and K. Wang and seperately by S.P. Martin

Fundamental Symmetry:  $Z_{22}$  discrete gauge symmetry **SOLVES AQP !** 

proposed by K.S. Babu, I. Gogoladze and K. Wang and seperately by S.P. Martin

Fundamental Symmetry:  $Z_{22}$  discrete gauge symmetry **SOLVES AQP !** 

| multiplet        | Q | $U^c$ | $D^c$ | L  | $E^c$ | $N^c$ | $H_u$ | $H_d$ | X  | Y  |
|------------------|---|-------|-------|----|-------|-------|-------|-------|----|----|
| $Z_{22}$ Charges | 3 | 19    | 1     | 11 | 15    | 11    | 22    | 18    | 13 | 20 |
| PQ Charges       | 1 | 0     | 0     | 1  | 0     | 0     | -1    | -1    | 1  | -1 |

proposed by K.S. Babu, I. Gogoladze and K. Wang and seperately by S.P. Martin

Fundamental Symmetry:  $Z_{22}$  discrete gauge symmetry **SOLVES AQP !** 

| multiplet        | Q | $U^c$ | $D^c$ | L  | $E^c$ | $N^c$ | $H_u$ | $H_d$ | X  | Y  |
|------------------|---|-------|-------|----|-------|-------|-------|-------|----|----|
| $Z_{22}$ Charges | 3 | 19    | 1     | 11 | 15    | 11    | 22    | 18    | 13 | 20 |
| PQ Charges       | 1 | 0     | 0     | 1  | 0     | 0     | -1    | -1    | 1  | -1 |

$$W_{PQ} \ni \lambda_{\mu} \frac{X^2 H_u H_d}{m_P} + \lambda_2 \frac{X^2 Y^2}{m_P}$$

proposed by K.S. Babu, I. Gogoladze and K. Wang and seperately by S.P. Martin

Fundamental Symmetry:  $Z_{22}$  discrete gauge symmetry **SOLVES AQP !** 

| multiplet        | Q | $U^c$ | $D^c$ | L  | $E^c$ | $N^c$ | $H_u$ | $H_d$ | X  | Y  |
|------------------|---|-------|-------|----|-------|-------|-------|-------|----|----|
| $Z_{22}$ Charges | 3 | 19    | 1     | 11 | 15    | 11    | 22    | 18    | 13 | 20 |
| PQ Charges       | 1 | 0     | 0     | 1  | 0     | 0     | -1    | -1    | 1  | -1 |

$$W_{PQ} \ni \lambda_{\mu} \frac{X^2 H_u H_d}{m_P} + \lambda_2 \frac{X^2 Y^2}{m_P}$$

$$V = \sum_{\hat{\phi}} |\partial W / \partial \hat{\phi}|^2_{\hat{\phi} \to \phi}$$

$$V = (\lambda_2 C \phi_X^2 \phi_Y^2 / m_P + h.c.) + m_X^2 |\phi_X|^2 + m_Y^2 |\phi_Y|^2 \longrightarrow SSB \text{ Terms} + 4\lambda_2 |\phi_X \phi_Y|^2 / m_P^2 (|\phi_X|^2 + |\phi_Y|^2) \longrightarrow \text{F-Terms}$$

S. P. Martin, Phys. Rev. D 62 (2000) 095008 K. S. Babu, I. Gogoladze and K. Wang, Phys. Lett. B 560 (2003) 214.

proposed by K.S. Babu, I. Gogoladze and K. Wang and seperately by S.P. Martin

Fundamental Symmetry:  $Z_{22}$  discrete gauge symmetry **SOLVES AQP !** 

| multiplet        | Q | $U^c$ | $D^c$ | L  | $E^c$ | $N^c$ | $H_u$ | $H_d$ | X  | Y  |
|------------------|---|-------|-------|----|-------|-------|-------|-------|----|----|
| $Z_{22}$ Charges | 3 | 19    | 1     | 11 | 15    | 11    | 22    | 18    | 13 | 20 |
| PQ Charges       | 1 | 0     | 0     | 1  | 0     | 0     | -1    | -1    | 1  | -1 |

$$W_{PQ} \ni \lambda_{\mu} \frac{X^2 H_u H_d}{m_P} + \lambda_2 \frac{X^2 Y^2}{m_P}$$

$$V = \sum_{\hat{\phi}} |\partial W / \partial \hat{\phi}|^2_{\hat{\phi} \to \phi}$$

$$V = (\lambda_2 C \phi_X^2 \phi_Y^2 / m_P + h.c.) + m_X^2 |\phi_X|^2 + m_Y^2 |\phi_Y|^2 \longrightarrow SSB \text{ Terms} + 4\lambda_2 |\phi_X \phi_Y|^2 / m_P^2 (|\phi_X|^2 + |\phi_Y|^2) \longrightarrow \text{F-Terms}$$

CHARGE ASSISGNMENTS INCONSISTENT WITH GUT

ORIGINATES FROM CONDENSATION OF A FIELD OF CHARGE  $22e \rightarrow$  HIGHLY IMPLAUSIBLE

S. P. Martin, Phys. Rev. D 62 (2000) 095008 K. S. Babu, I. Gogoladze and K. Wang, Phys. Lett. B 560 (2003) 214.

$$\mathcal{L} \supset \int W d^2 \theta \longrightarrow \text{Non-trivial R charge : +1 (simplest)}$$

**Superpotential:** must carry R-charge **2** + **nN** for the  $\mathcal{L}$  to be invariant under  $Z_N^R$ ; (n = any integer)

$$\mathcal{L} \supset \int W d^2 \theta \longrightarrow \mathbb{N}$$

Non-trivial R charge : +1 (simplest)

**Superpotential:** must carry R-charge 2 + nN for the  $\mathcal{L}$  to be invariant under  $\mathbb{Z}_{\mathbb{N}}^{\mathbb{R}}$ ; (n = any integer)

| multiplet      | $\mathbb{Z}_4^R$ | $\mathbb{Z}_6^R$ | $\mathbb{Z}_8^R$ | $\mathbb{Z}^{R}_{12}$ | $\mathbb{Z}^R_{24}$ |
|----------------|------------------|------------------|------------------|-----------------------|---------------------|
| $H_u$          | 0                | 4                | 0                | 4                     | 16                  |
| H <sub>d</sub> | 0                | 0                | 4                | 0                     | 12                  |
| Q              | 1                | 5                | 1                | 5                     | 5                   |
| U <sup>c</sup> | 1                | 5                | 1                | 5                     | 5                   |
| Ec             | 1                | 5                | 1                | 5                     | 5                   |
| L              | 1                | 3                | 5                | 9                     | 9                   |
| D <sup>c</sup> | 1                | 3                | 5                | 9                     | 9                   |
| N <sup>c</sup> | 1                | 1                | 5                | 1                     | 1                   |

These R-symmetries were shown to be anomaly-free and consistent with GUT

Lee et al. in arXiv : 1102.3595

$$\mathcal{L} \supset \int W d^2 \theta \longrightarrow$$

Non-trivial R charge : +1 (simplest)

**Superpotential:** must carry R-charge 2 + nN for the  $\mathcal{L}$  to be invariant under  $\mathbb{Z}_{\mathbb{N}}^{\mathbb{R}}$ ; (n = any integer)

| multiplet              | $\mathbb{Z}_4^R$ | $\mathbb{Z}_6^R$ | $\mathbb{Z}_8^R$ | $\mathbb{Z}^{R}_{12}$ | $\mathbb{Z}^R_{24}$ |
|------------------------|------------------|------------------|------------------|-----------------------|---------------------|
| $H_u$                  | 0                | 4                | 0                | 4                     | 16                  |
| H <sub>d</sub>         | 0                | 0                | 4                | 0                     | 12                  |
| Q                      | 1                | 5                | 1                | 5                     | 5                   |
| U <sup>c</sup>         | 1                | 5                | 1                | 5                     | 5                   |
| Ec                     | 1                | 5                | 1                | 5                     | 5                   |
| L                      | 1                | 3                | 5                | 9                     | 9                   |
| D <sup>c</sup>         | 1                | 3                | 5                | 9                     | 9                   |
| <i>N<sup>c</sup></i> ■ | 1                | 1                | 5                | 1                     | 1                   |

These R-symmetries were shown to be anomaly-free and consistent with GUT



All terms in superpotential (W) must have R charge : 2 + 24n (n = integer)

$$\mathcal{L} \supset \int W d^2 \theta \longrightarrow$$

Non-trivial R charge : +1 (simplest)



| multiplet              | $\mathbb{Z}_4^R$ | $\mathbb{Z}_6^R$ | $\mathbb{Z}_8^R$ | $\mathbb{Z}^{R}_{12}$ | $\mathbb{Z}^R_{24}$ |
|------------------------|------------------|------------------|------------------|-----------------------|---------------------|
| $H_u$                  | 0                | 4                | 0                | 4                     | 16                  |
| H <sub>d</sub>         | 0                | 0                | 4                | 0                     | 12                  |
| Q                      | 1                | 5                | 1                | 5                     | 5                   |
| U <sup>c</sup>         | 1                | 5                | 1                | 5                     | 5                   |
| Ec                     | 1                | 5                | 1                | 5                     | 5                   |
| L                      | 1                | 3                | 5                | 9                     | 9                   |
| D <sup>c</sup>         | 1                | 3                | 5                | 9                     | 9                   |
| <i>N<sup>c</sup></i> ■ | 1                | 1                | 5                | 1                     | 1                   |

These R-symmetries were shown to be anomaly-free and



All terms in superpotential (W) must have R charge : 2 + 24n ( n = integer)

consistent with GUT

**MBGW MODEL DOES NOT SOLVE AQP WITH ANY OF THESE R SYMMETRIES** 





CCK MODEL

$$W_{PQ} \ni \frac{1}{2} h_{ij} X N_i^c N_j^c + \frac{f}{m_P} X^3 Y + \frac{g_{CCK}}{m_P} X^2 H_u H_d$$
  
Choi et. al. Phys. Lett. B 403 (1997) 209.



MSY MODEL  

$$W_{PQ} \ni \frac{1}{2}h_{ij}XN_i^c N_j^c + \frac{f}{m_P}X^3Y + \frac{g_{MSY}}{m_P}XYH_uH_d$$
Murayama et. al. Phys. Lett. B 291 (1992) 418.  
CCK MODEL  

$$W_{PQ} \ni \frac{1}{2}h_{ij}XN_i^c N_j^c + \frac{f}{m_P}X^3Y + \frac{g_{CCK}}{m_P}X^2H_uH_d$$
Choi et. al. Phys. Lett. B 403 (1997) 209.  
SPM MODEL  

$$W_{PQ} \ni \frac{1}{2}h_{ij}XN_i^c N_j^c + \frac{f}{m_P}X^3Y + \frac{g_{SPM}}{m_P}Y^2H_uH_d$$
Martin et. al. Phys. Rev. D 62 (2000) 095008.

DOES NOT SOLVE AQP WITH ANY R SYMMETRIES MENTIONED EARLIER

# **Hybrid Model**



$$W_{PQ} 
i rac{f}{m_P} X^3 Y + rac{\lambda_\mu}{m_P} X^2 H_u H_d$$

| multiplet          | Q | Uc | Dc | L | Ec | N <sup>c</sup> | $H_u$ | H <sub>d</sub> | X  | Y  |
|--------------------|---|----|----|---|----|----------------|-------|----------------|----|----|
| $Z_{24}^R$ Charges | 5 | 5  | 9  | 9 | 5  | 1              | 16    | 12             | -1 | 5  |
| PQ Charges         | 1 | 0  | 0  | 1 | 0  | 0              | -1    | -1             | 1  | -3 |

$$W_{PQ} 
i rac{f}{m_P} X^3 Y + rac{\lambda_\mu}{m_P} X^2 H_u H_d$$

| multiplet          | Q | Uc | Dc | L | Ec | N <sup>c</sup> | $H_u$ | H <sub>d</sub> | X  | Y  |
|--------------------|---|----|----|---|----|----------------|-------|----------------|----|----|
| $Z_{24}^R$ Charges | 5 | 5  | 9  | 9 | 5  | 1              | 16    | 12             | -1 | 5  |
| PQ Charges         | 1 | 0  | 0  | 1 | 0  | 0              | -1    | -1             | 1  | -3 |

Lowest order PQ-violating terms in  $W_{PQ}$ :

$$X^8Y^2/m_P^7$$
 ,  $X^4Y^6/m_P^7\,\,\,{
m and}\,\,\,Y^{10}/m_P^7$ 

$$W_{PQ} 
i rac{f}{m_P} X^3 Y + rac{\lambda_\mu}{m_P} X^2 H_u H_d$$

| multiplet          | Q | Uc | Dc | L | Ec | N <sup>c</sup> | $H_u$ | H <sub>d</sub> | X  | Y  |
|--------------------|---|----|----|---|----|----------------|-------|----------------|----|----|
| $Z_{24}^R$ Charges | 5 | 5  | 9  | 9 | 5  | 1              | 16    | 12             | -1 | 5  |
| PQ Charges         | 1 | 0  | 0  | 1 | 0  | 0              | -1    | -1             | 1  | -3 |

Lowest order PQ-violating terms in  $W_{PQ}$ :

$$X^8Y^2/m_P^7$$
 ,  $X^4Y^6/m_P^7\,\,\,{
m and}\,\,\,Y^{10}/m_P^7$ 

$$W \ni f_u Q H_u U^c + f_d Q H_d D^c + f_\ell L H_d E^c + f_\nu L H_u N^c$$
  
+  $f X^3 Y/m_P + \lambda_\mu X^2 H_u H_d/m_P + M_N N^c N^c/2$ 

$$W_{PQ} 
i rac{f}{m_P} X^3 Y + rac{\lambda_\mu}{m_P} X^2 H_u H_d$$

| multiplet          | Q | Uc | Dc | L | Ec | N <sup>c</sup> | $H_u$ | H <sub>d</sub> | X  | Y  |
|--------------------|---|----|----|---|----|----------------|-------|----------------|----|----|
| $Z_{24}^R$ Charges | 5 | 5  | 9  | 9 | 5  | 1              | 16    | 12             | -1 | 5  |
| PQ Charges         | 1 | 0  | 0  | 1 | 0  | 0              | -1    | -1             | 1  | -3 |

Lowest order PQ-violating terms in  $W_{PQ}$ :

$$X^8Y^2/m_P^7$$
 ,  $X^4Y^6/m_P^7\,\,\,{
m and}\,\,\,Y^{10}/m_P^7$ 

$$\begin{aligned} W &\ni f_u Q H_u U^c + f_d Q H_d D^c + f_\ell L H_d E^c + f_\nu L H_u N^c \\ &+ f X^3 Y/m_P + \lambda_\mu X^2 H_u H_d/m_P + M_N N^c N^c/2 \end{aligned}$$

$$V = \sum_{\hat{\phi}} |\partial W / \partial \hat{\phi}|^2_{\hat{\phi} \to \phi} \qquad V = [fA_f \frac{\phi_X^3 \phi_Y}{m_P} + h.c.] + m_X^2 |\phi_X|^2 + m_Y^2 |\phi_Y|^2 + \frac{f^2}{m_P^2} [9\phi_X^4 \phi_Y^2 + \phi_X^6]$$

H. Baer, V. Barger, and D. S., Phys. Lett. B 790 (2019) 58-63



![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

H. Baer, V. Barger, and D. S., Phys. Lett. B 790 (2019) 58-63

# **Hybrid SPM**

f = 1

![](_page_58_Figure_2.jpeg)

H. Baer, V. Barger, and D. S., Phys. Lett. B 790 (2019) 58-63

#### **Kill Three Birds with One Stone**

#### $\mu_{eff} \sim m_{weak}$

Solves the Axion-quality Problem because no terms with suppression less than  $1/m_P^8$  are allowed in the scalar potential

![](_page_59_Picture_3.jpeg)

#### **Kill Three Birds with One Stone**

#### $\mu_{eff} \sim m_{weak}$

Solves the Axion-quality Problem because no terms with suppression less than  $1/m_P^8$  are allowed in the scalar potential

![](_page_60_Picture_3.jpeg)

#### **Added Advantages**

![](_page_60_Picture_5.jpeg)

H. Baer, V. Barger, and D. S., Phys. Lett. B 790 (2019) 58-63

![](_page_61_Picture_1.jpeg)

![](_page_62_Picture_1.jpeg)

SM Backgrounds:  $au ar{ au} j$ ,  $tar{t}$ , WWj,  $W\ellar{\ell} j$ ,  $Z\ellar{\ell} j$ 

#### **BENCHMARK POINTS**

- BM1 (NUHM2):  $m_{\tilde{\chi}_2^0} = 157.6 \text{ GeV}, m_{\tilde{\chi}_1^0} = 145.4 \text{ GeV},$  $\Delta m = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 12.2 \text{ GeV}, \Delta_{EW} = 13.9$
- BM2 (NUHM2): $m_{\tilde{\chi}_2^0} = 310.1 \text{ GeV}, \ m_{\tilde{\chi}_1^0} = 293.7 \text{ GeV}, \\ \Delta m = m_{\tilde{\chi}_2^0} m_{\tilde{\chi}_1^0} = 16.4 \text{ GeV}, \ \Delta_{EW} = 21.7$
- BM3 (GMM'):  $m_{\tilde{\chi}_2^0} = 207.0 \text{ GeV}, m_{\tilde{\chi}_1^0} = 202.7 \text{ GeV},$  $\Delta m = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 4.3 \text{ GeV}, \Delta_{EW} = 26.0$

![](_page_63_Figure_1.jpeg)

BASIC CUTS $p_T(j) > 80 \text{ GeV}, \ p_T(\ell) > 1 \text{ GeV}, \ \Delta R(\ell \bar{\ell}) > 0.01,$  $m(\ell \bar{\ell}) > 1 \text{ GeV}$  for the backgrounds  $\gamma^*, Z^* \to \ell \bar{\ell}$ 

SM Backgrounds:  $\tau \bar{\tau} j$ ,  $t\bar{t}$ , WWj,  $W\ell \bar{\ell} j$ ,  $Z\ell \bar{\ell} j$ 

#### **BENCHMARK POINTS**

- BM1 (NUHM2):  $m_{\tilde{\chi}_2^0} = 157.6 \text{ GeV}, m_{\tilde{\chi}_1^0} = 145.4 \text{ GeV},$  $\Delta m = m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 12.2 \text{ GeV}, \Delta_{EW} = 13.9$
- BM2 (NUHM2): $m_{\tilde{\chi}_{2}^{0}} = 310.1 \text{ GeV}, \ m_{\tilde{\chi}_{1}^{0}} = 293.7 \text{ GeV}, \\ \Delta m = m_{\tilde{\chi}_{2}^{0}} m_{\tilde{\chi}_{1}^{0}} = 16.4 \text{ GeV}, \ \Delta_{EW} = 21.7$
- BM3 (GMM'):  $m_{\tilde{\chi}_2^0} = 207.0 \text{ GeV}, \ m_{\tilde{\chi}_1^0} = 202.7 \text{ GeV}, \ \Delta m = m_{\tilde{\chi}_2^0} m_{\tilde{\chi}_1^0} = 4.3 \text{ GeV}, \ \Delta_{EW} = 26.0$

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_1.jpeg)

H. Baer, V. Barger, D. S. and Xerxes Tata Phys. Rev. D 105 (2022) 9, 095017

## **Angle Cuts**

![](_page_66_Figure_1.jpeg)

H. Baer, V. Barger, D. S. and Xerxes Tata Phys. Rev. D 105 (2022) 9, 095017

![](_page_67_Figure_1.jpeg)

Table: Cross sections (in fb) for signal benchmark points and the various SM backgrounds listed in the text after various cuts.

![](_page_68_Figure_1.jpeg)

•  $m(\ell\bar{\ell}) < 50~{\rm GeV}$ 

![](_page_69_Figure_1.jpeg)

H. Baer, V. Barger, D. S. and Xerxes Tata Phys. Rev. D 105 (2022) 9, 095017

#### **Mass Reach**

![](_page_70_Figure_1.jpeg)

H. Baer, V. Barger, D. S. and Xerxes Tata Phys. Rev. D 105 (2022) 9, 095017

#### Mass Reach (nAMSB model)

**Model Line:**  $m_0(3) = m_{3/2}/35, m_0(1,2) = 2m_0(3), A_0 = 1.2m_0(3), \tan\beta = 10, m_A = 2TeV$ 

![](_page_71_Figure_2.jpeg)

H. Baer, V. Barger, J. Bolich, J. Dutta, D.S., ArXiv: 2408.03276 [hep-ph]
#### **Higgsino Pair-Production at LHC**



Natural SUSY: Higgsinos at  $\sqrt{s}$  = 14 TeV and  $\mathcal{L}$  = 3  $ab^{-1}$ 

#### **Snowmass report in 2021**

H. Baer, V. Barger, D. S. and Xerxes Tata Phys. Rev. D 105 (2022) 9, 095017

#### Same-Sign Diboson + $E_T$



#### Same-Sign Diboson + $E_T$



#### **Top squark searches**



Model Line:  $m_0 = 5$  TeV,  $m_{1/2} = 1.2$  TeV,  $tan \beta = 10$ ,  $\mu = 250$  GeV,  $m_A = 2$  TeV,  $A_0 = -7$  TeV to -9 TeV



H. Baer, V. Barger, J. Dutta, D.S., K. Zhang, Phys.Rev.D 108 (2023) 7

#### **LHC Confronts SUSY**



H. Baer, V. Barger, J.S. Gainer, D. S., H. Serce Phys. Rev. D 98 (2018) 7, 075010

#### Phenomenology

Natural SUSY: Higgsinos at 
$$\sqrt{s}$$
 = 14 TeV and  ${\cal L}$  = 3  $ab^{-1}$ 

Natural SUSY: Winos at  $\sqrt{s}$ = 27 TeV and  $\mathcal{L}$  = 3 ab<sup>-1</sup>

Natural SUSY: Stop and Gluinos at  $\sqrt{s}$  = 27 TeV and L = 15 ab<sup>-1</sup>

Type - III Seesaw model: Lightest exotic fermions ( $\Sigma^{\pm,0}$ ) at  $\sqrt{s}$  =27 TeV and  $\mathcal{L}$  = 15 ab<sup>-1</sup>

Type - II Seesaw model/ Georgi-Machacek model:  $\Delta^{\pm\pm}$  at  $\sqrt{s} = 27$  TeV and  $\mathcal{L} = 15$  ab<sup>-1</sup> https://indico.cern.ch/event/1375202/ - April 25th 2024 - Roberto Franceschini - LHC top WG

#### Has LHC excluded Light new Physics?



#### Has LHC excluded Light new Physics?

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

August 2023

| Model                                             |                                                                                                                                                 | Signature $\int \mathcal{L} dt$ [f]                                            |                                   |                            | <i>C dt</i> [fb <sup>-</sup>               | <sup>-1</sup> ] Mass limit |                                                                                       |                          |                |          |                                                                    | Reference                                                                                                                  |                                      |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|----------------------------|--------------------------------------------|----------------------------|---------------------------------------------------------------------------------------|--------------------------|----------------|----------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Inclusive Searches                                | $\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_1^0$                                                                                     |                                                                                | 0 <i>e</i> , μ<br>mono-jet        | 2-6 jets<br>1-3 jets       | $E_T^{ m miss}$<br>$E_T^{ m miss}$         | 140<br>140                 | <ul> <li><i>q</i> [1×, 8× Degen.]</li> <li><i>q</i> [8× Degen.]</li> </ul>            |                          | 1.0<br>0.9     |          | 1.85                                                               | $\mathfrak{m}(	ilde{\chi}_1^0){<}400~{ m GeV}$<br>$\mathfrak{m}(	ilde{q}){-}\mathfrak{m}(	ilde{\chi}_1^0){=}5~{ m GeV}$    | 2010.14293<br>2102.10874             |
|                                                   | $\tilde{g}\tilde{g},\tilde{g}{ ightarrow} q\bar{q}\tilde{\chi}_1^0$                                                                             |                                                                                | 0 <i>e</i> , <i>µ</i>             | 2-6 jets                   | $E_T^{ m miss}$                            | 140                        | ĝ<br>ĝ                                                                                |                          | Forbidden      |          | 2.3<br>1.15-1.95                                                   | $m(	ilde{\mathcal{X}}_1^0) = 0 \; { m GeV} \ m(	ilde{\mathcal{X}}_1^0) = 1000 \; { m GeV}$                                 | 2010.14293<br>2010.14293             |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}$                                                                               | 0                                                                              | 1 e, µ                            | 2-6 jets                   |                                            | 140                        | ğ                                                                                     |                          |                |          | 2.2                                                                | $m(\tilde{\chi}_1^0)$ <600 GeV                                                                                             | 2101.01629                           |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)$                                                                                  | $\tilde{x}^0_{1}$                                                              | <i>ее</i> , µµ                    | 2 jets                     | $E_T^{\rm miss}$                           | 140                        | ğ                                                                                     |                          |                |          | 2.2                                                                | m( $	ilde{\chi}_{1}^{0}$ )<700 GeV                                                                                         | 2204.13072                           |
|                                                   | ĝĝ, ĝ→qqWZ                                                                                                                                      | $\tilde{x}_1^0$                                                                | 0 <i>e</i> , μ<br>SS <i>e</i> , μ | 7-11 jets<br>6 jets        | $E_T^{\rm miss}$                           | 140<br>140                 | ĩg<br>ĩg                                                                              |                          |                | .15      | 1.97                                                               | ${\sf m}({	ilde \chi}_1^0) < 600 { m GeV} \ {\sf m}({	ilde g}) - {\sf m}({	ilde \chi}_1^0) = 200 { m GeV}$                 | 2008.06032<br>2307.01094             |
|                                                   | $\tilde{g}\tilde{g},  \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$                                                                           |                                                                                | 0-1 <i>e</i> ,μ<br>SS <i>e</i> ,μ | 3 <i>b</i><br>6 jets       | $E_T^{ m miss}$                            | 140<br>140                 | كۆ كۆ                                                                                 |                          |                | 1.25     | 2.45                                                               | m( $	ilde{\mathcal{X}}_1^0$ )<500 GeV<br>m( $	ilde{g}$ )-m( $	ilde{\mathcal{X}}_1^0$ )=300 GeV                             | 2211.08028<br>1909.08457             |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $	ilde{b}_1 	ilde{b}_1$                                                                                                                         |                                                                                | 0 <i>e</i> , <i>µ</i>             | 2 <i>b</i>                 | $E_T^{ m miss}$                            | 140                        | $\tilde{b}_1 \\ \tilde{b}_1$                                                          |                          | 0.68           | 1.255    |                                                                    | $m(	ilde{\chi}_1^0){<}400GeV$<br>10 $GeV{<}\Deltam(	ilde{b}_1,	ilde{\chi}_1^0){<}20GeV$                                    | 2101.12527<br>2101.12527             |
|                                                   | $\tilde{b}_1\tilde{b}_1,\tilde{b}_1{\rightarrow}b\tilde{\chi}$                                                                                  | ${}^{0}_{2} \rightarrow bh \tilde{\chi}^{0}_{1}$                               | 0 e, μ<br>2 τ                     | 6 <i>b</i><br>2 <i>b</i>   | $E_T^{ m miss}$<br>$E_T^{ m miss}$         | 140<br>140                 | $\tilde{b}_1$ Forbidden $\tilde{b}_1$                                                 |                          | 0.13-0.85      | .23-1.35 | $\Delta m(\tilde{\chi}^0_2, \Delta m(\tilde{\chi}^0_2, \Delta m))$ | $ar{\chi}_1^0)$ =130 GeV, m $(ar{\chi}_1^0)$ =100 GeV<br>$ar{\chi}_2^0, ar{\chi}_1^0)$ =130 GeV, m $(ar{\chi}_1^0)$ =0 GeV | 1908.03122<br>2103.08189             |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$                                                                           |                                                                                | 0-1 <i>e</i> , μ                  | $\geq 1$ jet               | $E_T^{\rm miss}$                           | 140                        | $\tilde{t}_1$                                                                         |                          |                | 1.25     |                                                                    | $m(\tilde{\chi}_1^0)=1 \text{ GeV}$                                                                                        | 2004.14060, 2012.03799               |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \lambda$                                                                                   | $\tilde{\ell}_1^0$                                                             | $1 e, \mu$                        | 3 jets/1 b                 | $E_T^{\text{miss}}$                        | 140                        | Ĩ1                                                                                    | Forbidden                | 1.0            |          |                                                                    | $m(\tilde{\chi}_1^0)=500 \text{ GeV}$                                                                                      | 2012.03799, ATLAS-CONF-2023-043      |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b v$                                                                           | $\tilde{\tau}_1 \rightarrow \tau G$                                            | 1-2 <i>τ</i>                      | 2 jets/1 b                 | ET                                         | 140                        |                                                                                       | F                        | Forbidden      | 1.4      |                                                                    | m( $\tilde{\tau}_1$ )=800 GeV                                                                                              | 2108.07665                           |
|                                                   | $t_1 t_1, t_1 \rightarrow c \chi_1^-$                                                                                                           | $\vec{c} \cdot \vec{c} \to c \mathcal{X}_1$                                    | 0 e, μ<br>0 e, μ                  | mono-jet                   | $E_T^{\text{miss}}$                        | 140                        | $\tilde{t}_1$                                                                         | 0.55                     | 0.85           |          |                                                                    | $m(\mathcal{X}_1)=0 \text{ GeV}$<br>$m(\tilde{\mathcal{I}}_1,\tilde{c})-m(\tilde{\mathcal{X}}_1^0)=5 \text{ GeV}$          | 2102.10874                           |
|                                                   | $ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\mathcal{X}}_2^0,  \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + $ | $ \widetilde{\chi}_{2}^{0} \rightarrow Z/h\widetilde{\chi}_{1}^{0} $ Z         | 1-2 e,μ<br>3 e,μ                  | 1-4 <i>b</i><br>1 <i>b</i> | $E_T^{\text{miss}}$<br>$E_T^{\text{miss}}$ | 140<br>140                 | $\tilde{t}_1$<br>$\tilde{t}_2$                                                        | Forbidden                | 0.067-<br>0.86 | 1.18     | $m(\tilde{\mathcal{X}}_1^0) = 0$                                   | $m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$<br>360 GeV, $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$            | 2006.05880<br>2006.05880             |
| EW<br>direct                                      | ${	ilde \chi}_1^{\pm} {	ilde \chi}_2^0$ via WZ                                                                                                  |                                                                                | Multiple ℓ/jets<br>ee,μμ          | s<br>≥ 1 jet               | $E_T^{ m miss}$<br>$E_T^{ m miss}$         | 140<br>140                 |                                                                                       |                          | 0.96           |          |                                                                    | $m(\tilde{\chi}_1^0)=0$ , wino-bino<br>$m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino                      | 2106.01676, 2108.07586<br>1911.12606 |
|                                                   | $	ilde{\chi}_1^{\pm} 	ilde{\chi}_1^{\mp}$ via WV                                                                                                | V                                                                              | 2 e, µ                            |                            | $E_T^{ m miss}$                            | 140                        | $\tilde{\chi}_1^{\pm}$                                                                | 0.42                     |                |          |                                                                    | m( $\tilde{\chi}_1^0$ )=0, wino-bino                                                                                       | 1908.08215                           |
|                                                   | $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0}$ via $Wh$                                                                                          |                                                                                | Multiple ℓ/jets                   | S                          | $E_T^{\rm miss}$                           | 140                        | $\tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0$ Forbidden                                   |                          | 1.0            | 6        |                                                                    | m( $\tilde{\chi}_1^0$ )=70 GeV, wino-bino                                                                                  | 2004.10894, 2108.07586               |
|                                                   | $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L /$                                                                              | $\tilde{v}$                                                                    | 2 e, µ                            |                            | $E_T^{\text{miss}}$                        | 140                        | $\tilde{\chi}_1^{\pm}$                                                                |                          | 1.0            |          |                                                                    | $m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$                                           | 1908.08215                           |
|                                                   | $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$                                                                  | ~0                                                                             | 2τ                                | 0.1-1-                     | $E_T^{\text{miss}}$                        | 140                        | $\tilde{\tau}$ [ $\tilde{\tau}_{\rm R}, \tilde{\tau}_{\rm R,L}$ ]                     | 0.34 0.48                |                |          |                                                                    | $m(\tilde{\chi}_1^0)=0$                                                                                                    | ATLAS-CONF-2023-029                  |
|                                                   | $\ell_{\mathrm{L,R}}\ell_{\mathrm{L,R}}, \ell \rightarrow 0$                                                                                    | $\alpha_1^*$                                                                   | 2 e, μ<br>ee, μμ                  | $\ge 1$ jet                | $E_T^{\text{miss}}$                        | 140<br>140                 | ℓ<br>ℓ 0.26                                                                           |                          | 0.7            |          |                                                                    | $m(\widetilde{\ell})=0$<br>$m(\widetilde{\ell})-m(\widetilde{\chi}_1^0)=10~{ m GeV}$                                       | 1908.08215<br>1911.12606             |
|                                                   | $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}$                                                                                          | /ZĜ                                                                            | 0 e, µ                            | $\geq 3 b$                 | E <sub>T</sub> miss                        | 140                        | Ĥ                                                                                     |                          | 0.94           |          |                                                                    | $BR(\tilde{\chi}^0_d \rightarrow h\tilde{G})=1$                                                                            | To appear                            |
|                                                   |                                                                                                                                                 |                                                                                | 4 e, μ<br>0 e, μ                  | 2 large iet                | s Emiss                                    | 140                        | H<br>Ĥ                                                                                | 0.55                     | 0.45-0.93      |          |                                                                    | $ BR(\tilde{\chi}_1^c \to ZG) = 1  BR(\tilde{\chi}_1^c \to Z\tilde{G}) = 1 $                                               | 2103.11684<br>2108.07586             |
|                                                   |                                                                                                                                                 |                                                                                | 2 e, µ                            | ≥ 2 jets                   | $E_T^{\text{miss}}$                        | 140                        | Ĥ                                                                                     |                          | 0.77           |          | BF                                                                 | $R(\tilde{\chi}_1^0 \rightarrow Z\tilde{G}) = BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G}) = 0.5$                           | 2204.13072                           |
|                                                   |                                                                                                                                                 |                                                                                |                                   |                            | 1                                          |                            |                                                                                       |                          |                |          |                                                                    |                                                                                                                            |                                      |
| ong-lived<br>particles                            | Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$                                                                                                      | prod., long-lived $	ilde{\chi}_1^{\pm}$                                        | Disapp. trk                       | 1 jet                      | $E_T^{\rm miss}$                           | 140                        |                                                                                       | 0                        | 0.66           |          |                                                                    | Pure Wino<br>Pure higgsino                                                                                                 | 2201.02472<br>2201.02472             |
|                                                   | Stable g R-h                                                                                                                                    | adron                                                                          | pixel dE/dx                       |                            | $E_T^{\rm miss}$                           | 140                        | Ĩ                                                                                     |                          |                |          | 2.05                                                               |                                                                                                                            | 2205.06013                           |
|                                                   | Metastable $\tilde{g}$                                                                                                                          | R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$                          | pixel dE/dx                       |                            | $E_T^{\rm miss}$                           | 140                        | $\tilde{g} [\tau(\tilde{g}) = 10 \text{ ns}]$                                         |                          |                |          | 2.2                                                                | $m(\tilde{\chi}_1^0)=100 \text{ GeV}$                                                                                      | 2205.06013                           |
|                                                   | $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$                                                                              |                                                                                | Displ. lep                        |                            | $E_T^{\rm miss}$                           | 140                        | $\tilde{e}, \tilde{\mu}$                                                              | 0.24                     | 0.7            |          |                                                                    | $\tau(\tilde{\ell}) = 0.1 \text{ ns}$                                                                                      | 2011.07812                           |
| 1                                                 |                                                                                                                                                 |                                                                                | pixel dE/dx                       |                            | $E_T^{ m miss}$                            | 140                        | τ<br>τ̃                                                                               | 0.36                     |                |          |                                                                    | $\tau(\tilde{\ell}) = 0.1 \text{ hs}$<br>$\tau(\tilde{\ell}) = 10 \text{ ns}$                                              | 2205.06013                           |
| RPV                                               | $	ilde{\chi}_1^{\pm} 	ilde{\chi}_1^{\mp} / 	ilde{\chi}_1^0$ , $	ilde{\chi}_1^{\pm}$                                                             | $\rightarrow Z\ell \rightarrow \ell\ell\ell$                                   | 3 e, μ                            |                            |                                            | 140                        | $\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR( $Z\tau$ )=1, BR( $Ze$ )=1]         | 0.62                     | 25 1.0         |          |                                                                    | Pure Wino                                                                                                                  | 2011.10543                           |
|                                                   | $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow 1$                                                                    | WW/Zllllvv                                                                     | 4 e, µ                            | 0 jets                     | $E_T^{ m miss}$                            | 140                        | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0  [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ |                          | 0.95           | 1.(      | 55                                                                 | $m(\tilde{\chi}_1^0)=200 \text{ GeV}$                                                                                      | 2103.11684                           |
|                                                   | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0},$                                                                             | $\tilde{\chi}_1^0 \to q q q$                                                   |                                   | ≥8 jets                    |                                            | 140                        | $\tilde{g}$ [m( $\tilde{\chi}_1^o$ )=50 GeV, 1250 GeV]                                |                          |                |          | 1.6 2.25                                                           | Large $\lambda_{112}''$                                                                                                    | To appear                            |
|                                                   | $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0$                                                                 | $\rightarrow tbs$                                                              |                                   | Multiple                   |                                            | 36.1                       | $t  [\mathcal{A}_{323}^{\prime\prime} = 2e-4, 1e-2]$                                  | 0.55                     | 1.0            |          |                                                                    | $m(\tilde{\chi}_1^0)=200 \text{ GeV}, \text{ bino-like}$                                                                   | ATLAS-CONF-2018-003                  |
|                                                   | $tt, t \rightarrow b\chi_1^-, \chi_1^-$                                                                                                         | $\rightarrow bbs$                                                              |                                   | $\geq 4b$<br>2 jote + 2 h  |                                            | 140                        | T [ag bs]                                                                             | r-orbiaden               | 0.95           |          |                                                                    | m(𝑢 <sub>1</sub> )=500 GeV                                                                                                 | 2010.01015                           |
|                                                   | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow o\ell$                                                                                        |                                                                                | 2011                              | 2 jeis + 2 D               |                                            | 36.1                       | 1 [44, 05]                                                                            | 0.42 0.6                 |                | 0 4-1 45 | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                            | $BR(\tilde{t}_1 \rightarrow he/hu) > 20\%$                                                                                 | 1710.05544                           |
|                                                   | -1-1,-1 .40                                                                                                                                     |                                                                                | 1μ                                | DV                         |                                            | 136                        | $\tilde{t}_1$ [1e-10< $\lambda'_{23k}$ <1e-8, 3e-10< $\lambda'_{23k}$                 | ℓ' <sub>23k</sub> <3e-9] | 1.0            | 0.7-1.45 | 1.6                                                                | $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$                                                               | 2003.11956                           |
|                                                   | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_1^0$                                                                      | $\tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$ | 1-2 <i>e</i> , <i>µ</i>           | ≥6 jets                    |                                            | 140                        | $\tilde{\chi}_{1}^{0}$ 0.2-0                                                          | 0.32                     |                |          |                                                                    | Pure higgsino                                                                                                              | 2106.09609                           |
|                                                   |                                                                                                                                                 |                                                                                |                                   |                            |                                            |                            |                                                                                       |                          |                |          |                                                                    |                                                                                                                            |                                      |
| *0-1                                              | a colocitor                                                                                                                                     | of the excitable                                                               | oo limite en                      | now stat-                  | o or                                       |                            | <b>0</b> -1                                                                           |                          |                | 1        |                                                                    | · · · · · ·                                                                                                                |                                      |
|                                                   | a selection                                                                                                                                     | or une avallable IIId                                                          | ເວວ ແມ່ນເວ ບໍ່ໄປ ໄ                | IGW SIDLE                  | 301                                        |                            | 0                                                                                     |                          |                |          |                                                                    | Mage ecale i IeVi                                                                                                          |                                      |

\*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Mass scale [TeV]

 $\sqrt{s} = 13 \text{ TeV}$ 

**ATLAS** Preliminary

#### **New Physics: Light or Heavy?**



Energy line of SM and BSM particles

**Our proposal:** Study well-known observables to reveal New Physics

This work: Precise measurement of top quark observables

## Light New Physics from $t\bar{t}$

The **LHC**, being a **"top quark factory"**, helps in precise measurement of various properties of the top quark



Pair-production of top quarks with each top t decaying to b and  $W^{\pm}$  which further decays leptonically

#### **Targeted New Physics Scenario**

**Any BSM scenario with final state:** opposite sign dileptons + 2 b -jets + $\not{E}_T$ 

Example: Minimal supersymmetric standard model (MSSM)



Pair-production of the lightest stop  $\tilde{t}_1$ , with each  $\tilde{t}_1$ decaying to the lightest chargino  $\tilde{\chi}_1^{\pm}$  and b, and each  $\tilde{\chi}_1^{\pm}$  decaying to the lightest SUSY particle (LSP)  $\tilde{\chi}_1^0$  leptonically via a real or a virtual  $W^{\pm}$ boson

Several parameter space points generated using SPheno - 4.0.3 interfaced with SARAH -4.15.1

$$m_{\tilde{t}_1} = 180, 200, 220 \text{ GeV}$$
  
 $M_1 : 5 \text{ GeV} - 1 \text{ TeV}$   
 $\mu : 100 \text{ GeV} - m_{\tilde{t}_1}$ 

$$m_{\tilde{q}} \approx m_{\tilde{l}} \approx 3.5 \text{ TeV} \neq m_{\tilde{t}_1}$$
  
 $m_{\tilde{g}} \approx 3.6 \text{ TeV}$ 

$$122 \text{ GeV} \le m_h \le 128 \text{ GeV}$$

Lightest SUSY Particle (LSP) :  $\tilde{\chi}_1^0$ Next-to-Lightest SUSY Particle (NLSP) :  $\tilde{\chi}_1^{\pm}$ 

E. Bagnaschi, G. Corcella, R. Franceschini, D.S. Phys.Rev.Lett. 133 (2024) 6, 06180

A new physics scenario should not be excluded by

experimental searches **SPECIFICALLY** designed for this scenario, **AS WELL AS** 

experimental searches **NOT** designed for this scenario

https://smodels.github.io/ https://smodels.readthedocs.io/en/stable/ https://indico.cern.ch/event/1375202/ - April 25th 2024 - Roberto Franceschini - LHC top WG E. Bagnaschi, G. Corcella, R. Franceschini, **D.S.** Phys.Rev.Lett. 133 (2024) 6, 06180

mportant

A new physics scenario should not be excluded by

experimental searches **SPECIFICALLY** designed for this scenario, **AS WELL AS** 

experimental searches **NOT** designed for this scenario



nportan

https://smodels.github.io/ https://smodels.readthedocs.io/en/stable/ https://indico.cern.ch/event/1375202/ - April 25th 2024 - Roberto Franceschini - LHC top WG E. Bagnaschi, G. Corcella, R. Franceschini, **D.S.** Phys.Rev.Lett. 133 (2024) 6, 06180

A new physics scenario should not be excluded by

experimental searches SPECIFICALLY designed for this scenario, AS WELL AS

experimental searches **NOT** designed for this scenario



https://indico.cern.ch/event/1375202/ - April 25th 2024 - Roberto Franceschini - LHC top WG

E. Bagnaschi, G. Corcella, R. Franceschini, **D.S.** Phys.Rev.Lett. 133 (2024) 6, 06180

mportant

A new physics scenario should not be excluded by

experimental searches SPECIFICALLY designed for this scenario, AS WELL AS

experimental searches **NOT** designed for this scenario



https://indico.cern.ch/event/1375202/ - April 25th 2024 - Roberto Franceschini - LHC top WG

E. Bagnaschi, G. Corcella, R. Franceschini, **D.S.** Phys.Rev.Lett. 133 (2024) 6, 06180

mportant

#### Simulation

All the parameter space points are simulated with Pythia — 8.3 with PDF=NNPDF2.3 QCD+QED LO.

**Cuts imposed** (motivated by experimental papers)

 $p_T(\ell) \ge 25 \text{ GeV}, \ |\eta(\ell)| < 2.5, \ R(j) = 0.4, \ p_T(j) \ge 25 \text{ GeV}, \ |\eta(j)| < 2.5,$  $\Delta R(\ell j) > 0.2, \ \Delta R(\ell \ell) > 0.1, \ \Delta R(jj) > 0.4$ 

#### **Jet clustering:** Anti- $k_T$ jet algorithm

From  $m_{b\ell}$  distribution :

Significance = 
$$\sqrt{\sum_{i} \left[S_i / \left(B_i \times u_{B_i}\right)\right]^2}$$
 at  $\mathcal{L} = 139 \ fb^{-1}$ 

 $S_i = No.$  of signal events in the  $i^{th}$  bin

 $B_i = No.$  of background events in the  $i^{th}$  bin

 $u_{B_i}$  = Relative uncertainty in the background in the  $i^{th}$  bin

(extracted from ATLAS and CMS)

E. Bagnaschi, G. Corcella, R. Franceschini, D.S. Phys.Rev.Lett. 133 (2024) 6, 06180

Tech. Rep. ATLAS-CONF-2019-038 M. Aaboud et. al. (ATLAS), Eur. Phys. J. C 78, 129 (2018) A. M. Sirunyan et. al. (CMS), Eur. Phys. J. C 79, 368 (2019)

## **Benchmark Points** $(m_{\tilde{t}_1} = 200 \text{ GeV})$



E. Bagnaschi, G. Corcella, R. Franceschini, D.S. Phys.Rev.Lett. 133 (2024) 6, 06180

## Conclusion



A thorough study of well-known/well-measured observable such as  $m_{b\ell}$  can hint towards new physics in the top-quark sample.

#### Acknowledgements

Howard A. Baer (U. Oklahoma)

Vernon D. Barger (U. Wisconsin Madison)

Xerxes R. Tata (U. Hawaii)

Kuver Sinha (U. Oklahoma)

Kyu J. Bae (Kyungpook Natl. U., Daegu)

Shadman Salam (Dhaka U.)

Juhi Dutta (U. Oklahoma)

Jessica Bolich (U. Oklahoma)

Robert W. Deal (U. Wisconsin Madison)

Kairui Zhang (Nebraska U.)

Naturalness in SUSY, SUSY  $\mu$  problem,  $Z_{24}^R$  symmetry

Phenomenology of Natural SUSY models,

SUSY from String Landscape

Cheng-Wei Chiang (NTU Taiwan)

Sudip Jana (MPIK, Heidelberg)

 $W^{\pm}W^{\pm} + \not\!\!\!E_T$  from Natural SUSY, Type-III seesaw, Type-II seesaw/GM model

Gennaro Corcella (INFN Frascati)

Emanuele Bagnaschi (INFN Frascati)

Roberto Franceschini (INFN Roma Tre)

Light new physics from  $t\bar{t}$ 



# THANK YOU